5,113 research outputs found
Two-Dimensional Diffusion in the Presence of Topological Disorder
How topological defects affect the dynamics of particles hopping between
lattice sites of a distorted, two-dimensional crystal is addressed.
Perturbation theory and numerical simulations show that weak, short-ranged
topological disorder leads to a finite reduction of the diffusion coefficient.
Renormalization group theory and numerical simulations suggest that
longer-ranged disorder, such as that from randomly placed dislocations or
random disclinations with no net disclinicity, leads to subdiffusion at long
times.Comment: 10 pages, 6 figure
Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals
A sharp resistance drop associated with vortex lattice melting was observed
in high quality YBa_2Cu_4O_8 single crystals. The melting line is well
described well by the anisotropic GL theory. Two thermally activated flux flow
regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T
(T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation
energy for each region was obtained and the corresponding dissipation mechanism
was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8
single crystal melts into disentangled liquid, which then undergoes a 3D-2D
decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09
Toda systems in closed string tachyon condensation
We consider equations appearing in the study of localized tachyon
condensations. They are described by various Toda system when we consider the
condensation by the lowest tachyon corresponding to the monomial . The
tachyon potential is calculated as a solution to these equations. The Toda
system appearing in the deformation of \C^2/\Z_n by is identical to that
of singularity deformed by . For \C^3/\Z_n with deformation,
we find only generic non-simple form, similar to the case appearing in
\C/\Z_5\to \C/\Z_3 and we discuss the difficulties in these cases.Comment: 20 pages, no figur
Density Waves in a Transverse Electric Field
In a quasi-one-dimensional conductor with an open Fermi surface, a Charge or
a Spin Density Wave phase can be destroyed by an electric field perpendicular
to the direction of high conductivity. This mechanism, due to the breakdown of
electron-hole symmetry, is very similar to the orbital destruction of
superconductivity by a magnetic field, due to time-reversal symmetry.Comment: 3 pages, Latex, 2 figures, to appear in Phys. Rev. B Rapid Com
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Large emergency-response exercises: qualitative characteristics - a survey
Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized
Spin-dynamics simulations of the triangular antiferromagnetic XY model
Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic
behavior of the classical, antiferromagnetic XY model on a triangular lattice
with linear sizes . The temporal evolutions of spin configurations
were obtained by solving numerically the coupled equations of motion for each
spin using fourth-order Suzuki-Trotter decompositions of exponential operators.
From space- and time-displaced spin-spin correlation functions and their
space-time Fourier transforms we obtained the dynamic structure factor for momentum and frequency . Below
(Kosterlitz-Thouless transition), both the in-plane () and the
out-of-plane () components of exhibit very strong
and sharp spin-wave peaks. Well above , and
apparently display a central peak, and spin-wave signatures are still seen in
. In addition, we also observed an almost dispersionless domain-wall
peak at high below (Ising transition), where long-range order
appears in the staggered chirality. Above , the domain-wall peak
disappears for all . The lineshape of these peaks is captured reasonably
well by a Lorentzian form. Using a dynamic finite-size scaling theory, we
determined the dynamic critical exponent = 1.002(3). We found that our
results demonstrate the consistency of the dynamic finite-size scaling theory
for the characteristic frequeny and the dynamic structure factor
itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR
Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors
We consider the real part of the conductivity, \sigma_1(\omega), arising from
classical phase fluctuations in a model for high-T_c superconductors. We show
that the frequency integral of that conductivity, \int_0^\infty \sigma_1
d\omega, is non-zero below the superconducting transition temperature ,
provided there is some quenched disorder in the system. Furthermore, for a
fixed amount of quenched disorder, this integral at low temperatures is
proportional to the zero-temperature superfluid density, in agreement with
experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped
phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.
Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60
Muon spin rotation measurements of the magnetic field distribution in the
vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60}
reveal a vortex-lattice melting transition at much lower temperature than that
in the fully oxygenated material. The transition is best described by a model
in which adjacent layers of ``pancake'' vortices decouple in the liquid phase.
Evidence is also found for a pinning-induced crossover from a solid 3D to
quasi-2D vortex lattice, similar to that observed in the highly anisotropic
superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file
A novel compartment, the 'subqpical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor.
Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA–egfp transcriptional fusion we located nepA transcription to a novel compartment, the ‘subapical stem’ of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments
- …
