5,113 research outputs found

    Two-Dimensional Diffusion in the Presence of Topological Disorder

    Full text link
    How topological defects affect the dynamics of particles hopping between lattice sites of a distorted, two-dimensional crystal is addressed. Perturbation theory and numerical simulations show that weak, short-ranged topological disorder leads to a finite reduction of the diffusion coefficient. Renormalization group theory and numerical simulations suggest that longer-ranged disorder, such as that from randomly placed dislocations or random disclinations with no net disclinicity, leads to subdiffusion at long times.Comment: 10 pages, 6 figure

    Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals

    Full text link
    A sharp resistance drop associated with vortex lattice melting was observed in high quality YBa_2Cu_4O_8 single crystals. The melting line is well described well by the anisotropic GL theory. Two thermally activated flux flow regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T (T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation energy for each region was obtained and the corresponding dissipation mechanism was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8 single crystal melts into disentangled liquid, which then undergoes a 3D-2D decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09

    Toda systems in closed string tachyon condensation

    Full text link
    We consider tttt^* equations appearing in the study of localized tachyon condensations. They are described by various Toda system when we consider the condensation by the lowest tachyon corresponding to the monomial xyxy. The tachyon potential is calculated as a solution to these equations. The Toda system appearing in the deformation of \C^2/\Z_n by xyxy is identical to that of DnD_n singularity deformed by xx. For \C^3/\Z_n with xyzxyz deformation, we find only generic non-simple form, similar to the case appearing in \C/\Z_5\to \C/\Z_3 and we discuss the difficulties in these cases.Comment: 20 pages, no figur

    Density Waves in a Transverse Electric Field

    Full text link
    In a quasi-one-dimensional conductor with an open Fermi surface, a Charge or a Spin Density Wave phase can be destroyed by an electric field perpendicular to the direction of high conductivity. This mechanism, due to the breakdown of electron-hole symmetry, is very similar to the orbital destruction of superconductivity by a magnetic field, due to time-reversal symmetry.Comment: 3 pages, Latex, 2 figures, to appear in Phys. Rev. B Rapid Com

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte

    Large emergency-response exercises: qualitative characteristics - a survey

    Get PDF
    Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized

    Spin-dynamics simulations of the triangular antiferromagnetic XY model

    Full text link
    Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice with linear sizes L300L \leq 300. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space- and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w)S({\bf q},w) for momentum q{\bf q} and frequency ω\omega. Below TKTT_{KT}(Kosterlitz-Thouless transition), both the in-plane (SxxS^{xx}) and the out-of-plane (SzzS^{zz}) components of S(q,ω)S({\bf q},\omega) exhibit very strong and sharp spin-wave peaks. Well above TKTT_{KT}, SxxS^{xx} and SzzS^{zz} apparently display a central peak, and spin-wave signatures are still seen in SzzS^{zz}. In addition, we also observed an almost dispersionless domain-wall peak at high ω\omega below TcT_{c}(Ising transition), where long-range order appears in the staggered chirality. Above TcT_{c}, the domain-wall peak disappears for all qq. The lineshape of these peaks is captured reasonably well by a Lorentzian form. Using a dynamic finite-size scaling theory, we determined the dynamic critical exponent zz = 1.002(3). We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequeny ωm\omega_{m} and the dynamic structure factor S(q,ω)S({\bf q},\omega) itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR

    Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors

    Full text link
    We consider the real part of the conductivity, \sigma_1(\omega), arising from classical phase fluctuations in a model for high-T_c superconductors. We show that the frequency integral of that conductivity, \int_0^\infty \sigma_1 d\omega, is non-zero below the superconducting transition temperature TcT_c, provided there is some quenched disorder in the system. Furthermore, for a fixed amount of quenched disorder, this integral at low temperatures is proportional to the zero-temperature superfluid density, in agreement with experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.

    Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60

    Full text link
    Muon spin rotation measurements of the magnetic field distribution in the vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60} reveal a vortex-lattice melting transition at much lower temperature than that in the fully oxygenated material. The transition is best described by a model in which adjacent layers of ``pancake'' vortices decouple in the liquid phase. Evidence is also found for a pinning-induced crossover from a solid 3D to quasi-2D vortex lattice, similar to that observed in the highly anisotropic superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file

    A novel compartment, the 'subqpical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor.

    Get PDF
    Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA–egfp transcriptional fusion we located nepA transcription to a novel compartment, the ‘subapical stem’ of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments
    corecore