10,447 research outputs found

    Particle-in-cell and weak turbulence simulations of plasma emission

    Full text link
    The plasma emission process, which is the mechanism for solar type II and type III radio bursts phenomena, is studied by means of particle-in-cell and weak turbulence simulation methods. By plasma emission, it is meant as a loose description of a series of processes, starting from the solar flare associated electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent partial conversion of beam energy into the radiation energy by nonlinear processes. Particle-in-cell (PIC) simulation is rigorous but the method is computationally intense, and it is difficult to diagnose the results. Numerical solution of equations of weak turbulence (WT) theory, termed WT simulation, on the other hand, is efficient and naturally lends itself to diagnostics since various terms in the equation can be turned on or off. Nevertheless, WT theory is based upon a number of assumptions. It is, therefore, desirable to compare the two methods, which is carried out for the first time in the present paper with numerical solutions of the complete set of equations of the WT theory and with two-dimensional electromagnetic PIC simulation. Upon making quantitative comparisons it is found that WT theory is largely valid, although some discrepancies are also found. The present study also indicates that it requires large computational resources in order to accurately simulate the radiation emission processes, especially for low electron beam speeds. Findings from the present paper thus imply that both methods may be useful for the study of solar radio emissions as they are complementary.Comment: 21 pages, 9 figure

    What determines social service workers’ wages: A cross-country analysis using a Luxembourg Income Study

    Get PDF
    The study is aimed at exploring the influencing factor of wages among social service workers (SSWs) through a cross-country analysis. Using Luxembourg Income Study data, two aspects are emphasised: first, the trends and patterns of wage levels among SSWs. Second, the determining factors that influence their low wages at a cross-national level and how those factors are intersectionally intertwined to exacerbate the wage level. Three significant findings are confirmed: a universal gendered wage gap; a more significant wage gap for those on part-time and/or fractured contracts and employed in the private sector; and a substantial association between a higher education and higher wages. Two policy concerns are raised for discussion: first, tackling the gendered wage gap and ensuring more secure employment, and a guaranteed living wage for those employed in the private sector. Second, enhancing the professionalism for empowering their effective choices in the labour market is essential [148 words]

    Topology of Luminous Red Galaxies from the Sloan Digital Sky Survey

    Full text link
    We present measurements of the genus topology of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Data Release 7 catalog, with unprecedented statistical significance. To estimate the uncertainties in the measured genus, we construct 81 mock SDSS LRG surveys along the past light cone from the Horizon Run 3, one of the largest N-body simulations to date that evolved 7210^3 particles in a 10815 Mpc/h size box. After carefully modeling and removing all known systematic effects due to finite pixel size, survey boundary, radial and angular selection functions, shot noise and galaxy biasing, we find the observed genus amplitude to reach 272 at 22 Mpc/h smoothing scale with an uncertainty of 4.2%; the estimated error fully incorporates cosmic variance. This is the most accurate constraint of the genus amplitude to date, which significantly improves on our previous results. In particular, the shape of the genus curve agrees very well with the mean topology of the SDSS LRG mock surveys in the LCDM universe. However, comparison with simulations also shows small deviations of the observed genus curve from the theoretical expectation for Gaussian initial conditions. While these discrepancies are mainly driven by known systematic effects such as those of shot noise and redshift-space distortions, they do contain important cosmological information on the physical effects connected with galaxy formation, gravitational evolution and primordial non-Gaussianity. We address here the key role played by systematics on the genus curve, and show how to accurately correct for their effects to recover the topology of the underlying matter. In a forthcoming paper, we provide an interpretation of those deviations in the context of the local model of non-Gaussianity.Comment: 23 pages, 18 figures. APJ Supplement Series 201

    Molecular Gas Content of HI Monsters and Implications to Cold Gas Content Evolution in Galaxies

    Full text link
    We present 12CO (J=1-0) observations of a sample of local galaxies (0.04<z<0.08) with a large neutral hydrogen reservoir, or "HI monsters". The data were obtained using the Redshift Search Receiver on the FCRAO 14 m telescope. The sample consists of 20 HI-massive galaxies with M(HI)>3e10Msun from the ALFALFA survey and 8 LSBs with a comparable M(HI) (>1.5e10Msun). Our sample selection is purely based on the amount of neutral hydrogen, thereby providing a chance to study how atomic and molecular gas relate to each other in these HI-massive systems. We have detected CO in 15 out of 20 ALFALFA selected galaxies and 4 out of 8 LSBs with molecular gas mass M(H2) of (1-11)e9Msun. Their total cold gas masses of (2-7e10Msun make them some of the most gas-massive galaxies identified to date in the Local Universe. Observed trends associated with HI, H2, and stellar properties of the HI massive galaxies and the field comparison sample are analyzed in the context of theoretical models of galaxy cold gas content and evolution, and the importance of total gas content and improved recipes for handling spatially differentiated behaviors of disk and halo gas are identified as potential areas of improvement for the modeling.Comment: 18 pages, 11 figures, 2 tables; Accepted for publication in MNRA

    Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach

    Get PDF
    Zigzag graphene nanoribbon (zGNR) of narrow width has a moderate energy gap in its antiferromagnetic ground state. So far, first-principles electron transport calculations have been performed using nonequilibrium Green function (NEGF) method combined with density functional theory (DFT). However, the commonly practiced bottom-gate control has not been studied computationally due to the need to simulate an electron reservoir that fixes the chemical potential of electrons in the zGNR and electrodes. Here, we present the isochemical potential scheme to describe the top/back-gate effect using external potential. Then, we examine the change in electronic state under the modulation of chemical potential and the subsequent electron transport phenomena in zGNR transistor under substantial top-/back-gate and bias voltages. The gate potential can activate the device states resulting in a boosted current. This gate-controlled current-boosting could be utilized for designing novel zGNR field effect transistors (FETs).ope

    Spectral dimensions of hierarchical scale-free networks with shortcuts

    Full text link
    The spectral dimension has been widely used to understand transport properties on regular and fractal lattices. Nevertheless, it has been little studied for complex networks such as scale-free and small world networks. Here we study the spectral dimension and the return-to-origin probability of random walks on hierarchical scale-free networks, which can be either fractals or non-fractals depending on the weight of shortcuts. Applying the renormalization group (RG) approach to the Gaussian model, we obtain the spectral dimension exactly. While the spectral dimension varies between 11 and 22 for the fractal case, it remains at 22, independent of the variation of network structure for the non-fractal case. The crossover behavior between the two cases is studied through the RG flow analysis. The analytic results are confirmed by simulation results and their implications for the architecture of complex systems are discussed.Comment: 10 pages, 3 figure

    Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.Comment: 16 pages including 4 figure

    Spin relaxation in mesoscopic superconducting Al wires

    Full text link
    We studied the diffusion and the relaxation of the polarized quasiparticle spins in superconductors. To that end, quasiparticles of polarized spins were injected through an interface of a mesoscopic superconducting Al wire in proximity contact with an overlaid ferromagnetic Co wire in the single-domain state. The superconductivity was observed to be suppressed near the spin-injecting interface, as evidenced by the occurrence of a finite voltage for a bias current below the onset of the superconducting transition. The spin diffusion length, estimated from finite voltages over a certain length of Al wire near the interface, was almost temperature independent in the temperature range sufficiently below the superconducting transition but grew as the transition temperature was approached. This temperature dependence suggests that the relaxation of the spin polarization in the superconducting state is governed by the condensation of quasiparticles to the paired state. The spin relaxation in the superconducting state turned out to be more effective than in the normal state.Comment: 9 pages, 8 figure
    corecore