1,808 research outputs found

    Photon Luminescence of the Moon

    Get PDF
    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed

    Feasibility, Compliance, and Efficacy of a Randomized Controlled Trial Using Vibration in Pre-pubertal Children

    Get PDF
    Objective: Interventions utilizing vibration may increase bone mass and size which may reduce forearm fractures in children. This randomized controlled pilot trial tested the feasibility, compliance and efficacy of forearm loading regimes in an after-school program in pre-pubertal children aged 6-10 years. Methods: A 12-week randomized controlled trial incorporated high (HMMS; N=10) and low (LMMS; N=10) magnitude mechanical stimulation vibration, floor exercises (N=9), and controls (N=10). Radial bone measures by DXA and pQCT were compared at the end of intervention (12-weeks) and 4-months post-intervention (4- months post). Results: Percent changes were significantly greater in floor vs. control for ultra-distal areal BMD by DXA at 12- weeks (1%[-2,5] vs.-5%[-8,-2] respectively, p=0.02) and 4-months post (5%[1,8] vs -2%[-5,2], p=0.03) and in HMMS vs. controls for trabecular vBMD by pQCT at 12-weeks (4%[0, 8], vs. -8% [-14, -2], p=0.02). Children exposed to HMMS showed positive changes in cortical BMC, area, and cortical vBMD after 12 weeks that remained 4 months post-intervention. Children exposed to floor exercise showed positive changes in cortical BMC, area, and periosteal circumference 4-months post-intervention. Controls had decreased trabecular BMD, but increased bone area and periosteal circumference. Conclusions: Exposure to floor exercise and HMMS increased trabecular aBMD and vBMD in the radius

    In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures

    Get PDF
    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg

    Full text link
    We present the results of 12CO J = 1-0 line observations of eleven Galactic supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory (SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs interacting with molecular clouds. The mapping areas for the individual SNRs are determined to cover their full extent in the radio continuum. We used halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for the rest. We detected CO emission towards most of the remnants. In six SNRs, molecular clouds showed a good spatial relation with their radio morphology, although no direct evidence for the interaction was detected. Two SNRs are particularly interesting: G85.4+0.7, where there is a filamentary molecular cloud along the radio shell, and 3C434.1, where a large molecular cloud appears to block the western half of the remnant. We briefly summarize the results obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages, 12 figures, and 3 table

    Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation

    Full text link
    The study of models with extended Higgs sectors requires to minimize the corresponding Higgs potentials, which is in general very difficult. Here, we apply a recently developed method, called numerical polynomial homotopy continuation (NPHC), which guarantees to find all the stationary points of the Higgs potentials with polynomial-like nonlinearity. The detection of all stationary points reveals the structure of the potential with maxima, metastable minima, saddle points besides the global minimum. We apply the NPHC method to the most general Higgs potential having two complex Higgs-boson doublets and up to five real Higgs-boson singlets. Moreover the method is applicable to even more involved potentials. Hence the NPHC method allows to go far beyond the limits of the Gr\"obner basis approach.Comment: 9 pages, 4 figure

    A study of genetic variations, population size, and population dynamics of the catadromous Japanese eel Anguilla japonica (Pisces) in northern Taiwan

    Get PDF
    Japanese eels are widely distributed in northeast Asian countries, and they have a catadromous life history. In this article, we explored whether Japanese elvers have temporal genetic structure and whether the population went through population expansion during the Pleistocene. In total, 273 specimens were collected from the Tanshui River estuary, northern Taiwan, in 1989-2008. The highly variable region of the mitochondrial DNA D-loop was cloned and sequenced. A genealogy was reconstructed based on the Neighbor-joining method, and results showed an unobvious yearly clade and a high level of haplotype diversity, but low mean nucleotide diversity among samples. Most of the pairwise F (ST) appeared statistically insignificant. These genetic parameters suggested a lack of temporal population structure combined with a sustainable high effective population size of Japanese eels. Negative values of Tajima's D and Fu's F (s) appeared in all samples with high significance. The mismatch distribution, skyline plot, and minimum spanning network indicated that historical population expansion of the Japanese eel could be traced back to the Pleistocene. Results of this study imply the Japanese eel has a complex life history, and the temporal structure of Japanese eels should be continually monitored in the future

    Skyrmion Excitation in Two-Dimensional Spinor Bose-Einstein Condensate

    Full text link
    We study the properties of coreless vortices(skyrmion) in spinor Bose-Einstein condensate. We find that this excitation is always energetically unstable, it always decays to an uniform spin texture. We obtain the skyrmion energy as a function of its size and position, a key quantity in understanding the decay process. We also point out that the decay rate of a skyrmion with high winding number will be slower. The interaction between skyrmions and other excitation modes are also discussed.Comment: 5 pages, 4 figures, final version published in Phys. Rev.

    Full Connectivity: Corners, edges and faces

    Full text link
    We develop a cluster expansion for the probability of full connectivity of high density random networks in confined geometries. In contrast to percolation phenomena at lower densities, boundary effects, which have previously been largely neglected, are not only relevant but dominant. We derive general analytical formulas that show a persistence of universality in a different form to percolation theory, and provide numerical confirmation. We also demonstrate the simplicity of our approach in three simple but instructive examples and discuss the practical benefits of its application to different models.Comment: 28 pages, 8 figure
    • …
    corecore