71 research outputs found

    Special Issue on Wearable Computing and Machine Learning for Applications in Sports, Health, and Medical Engineering

    Get PDF
    Note: In lieu of an abstract, this is an excerpt from the first page. Recent advancement in digital technologies is driving a remarkable transformation in sports, health, and medical engineering, aiming to achieve the accurate quantification of performance, well-being, and disease condition, and the optimization of sports, clinical, and therapeutic training and treatment programs. Traditionally, understanding and monitoring of functional performance and capacity has been performed in gait laboratories based on optoelectronic motion capture systems. However, gait laboratories in practical settings are often not readily available because the systems are costly and require trained experts to operate. Most importantly, when assessments are restricted to laboratory settings, they provide a narrow snapshot of function and do not capture functionality in natural free-living settings, thus representing a severely under-sampled view of an individual’s condition. The use of mobile and wearable technologies has been explored in many sports, health, and medical research studies examining individuals in “in-the-wild” settings. Among the most important drivers of this transformation are (1) wearable sensors and (2) signal processing and machine learning algorithms. Wearable sensors are capable of collecting physical and/or physiological data continuously and seamlessly outside of laboratory settings. Signal processing and machine learning algorithms allow data-driven approaches for analyzing considerable amounts of multidimensional sensory data and for extracting important information relevant to the mentioned application areas (e.g., validating the efficacy of sports training, health benefits, and chronic disease progression). These technologies together would support how sports and clinical professionals understand and interpret individuals’ performance more objectively, and enable proactive, evidence-based, and personalized management systems

    Utilization of a novel digital measurement tool for quantitative assessment of upper extremity motor dexterity: a controlled pilot study.

    Get PDF
    BackgroundThe current methods of assessing motor function rely primarily on the clinician's judgment of the patient's physical examination and the patient's self-administered surveys. Recently, computerized handgrip tools have been designed as an objective method to quantify upper-extremity motor function. This pilot study explores the use of the MediSens handgrip as a potential clinical tool for objectively assessing the motor function of the hand.MethodsEleven patients with cervical spondylotic myelopathy (CSM) were followed for three months. Eighteen age-matched healthy participants were followed for two months. The neuromotor function and the patient-perceived motor function of these patients were assessed with the MediSens device and the Oswestry Disability Index respectively. The MediSens device utilized a target tracking test to investigate the neuromotor capacity of the participants. The mean absolute error (MAE) between the target curve and the curve tracing achieved by the participants was used as the assessment metric. The patients' adjusted MediSens MAE scores were then compared to the controls. The CSM patients were further classified as either "functional" or "nonfunctional" in order to validate the system's responsiveness. Finally, the correlation between the MediSens MAE score and the ODI score was investigated.ResultsThe control participants had lower MediSens MAE scores of 8.09%±1.60%, while the cervical spinal disorder patients had greater MediSens MAE scores of 11.24%±6.29%. Following surgery, the functional CSM patients had an average MediSens MAE score of 7.13%±1.60%, while the nonfunctional CSM patients had an average score of 12.41%±6.32%. The MediSens MAE and the ODI scores showed a statistically significant correlation (r=-0.341, p<1.14×10⁻⁔). A Bland-Altman plot was then used to validate the agreement between the two scores. Furthermore, the percentage improvement of the the two scores after receiving the surgical intervention showed a significant correlation (r=-0.723, p<0.04).ConclusionsThe MediSens handgrip device is capable of identifying patients with impaired motor function of the hand. The MediSens handgrip scores correlate with the ODI scores and may serve as an objective alternative for assessing motor function of the hand

    Using intervention mapping and behavior change techniques to develop a digital intervention for self-management in stroke: Development study

    Get PDF
    BACKGROUND: Digital therapeutics, such as interventions provided via smartphones or the internet, have been proposed as promising solutions to support self-management in persons with chronic conditions. However, the evidence supporting self-management interventions through technology in stroke is scarce, and the intervention development processes are often not well described, creating challenges in explaining why and how the intervention would work. OBJECTIVE: This study describes a specific use case of using intervention mapping (IM) and the taxonomy of behavior change techniques (BCTs) in designing a digital intervention to manage chronic symptoms and support daily life participation in people after stroke. IM is an implementation science framework used to bridge the gap between theories and practice to ensure that the intervention can be implemented in real-world settings. The taxonomy of BCTs consists of a set of active ingredients designed to change self-management behaviors. METHODS: We used the first 4 steps of the IM process to develop a technology-supported self-management intervention, interactive Self-Management Augmented by Rehabilitation Technologies (iSMART), adapted from a face-to-face stroke-focused psychoeducation program. Planning group members were involved in adapting the intervention. They also completed 3 implementation measures to assess the acceptability, appropriateness, and feasibility of iSMART. RESULTS: In step 1, we completed a needs assessment consisting of assembling a planning group to codevelop the intervention, conducting telephone surveys of people after stroke (n=125) to identify service needs, and performing a systematic review of randomized controlled trials to examine evidence of the effectiveness of digital self-management interventions to improve patient outcomes. We identified activity scheduling, symptom management, stroke prevention, access to care resources, and cognitive enhancement training as key service needs after a stroke. The review suggested that digital self-management interventions, especially those using cognitive behavioral theory, effectively reduce depression, anxiety, and fatigue and enhance self-efficacy in neurological disorders. Step 2 identified key determinants, objectives, and strategies for self-management in iSMART, including knowledge, behavioral regulation, skills, self-efficacy, motivation, negative and positive affect, and social and environmental support. In step 3, we generated the intervention components underpinned by appropriate BCTs. In step 4, we developed iSMART with the planning group members. Especially, iSMART simplified the original psychoeducation program and added 2 new components: SMS text messaging and behavioral coaching, intending to increase the uptake by people after stroke. iSMART was found to be acceptable (mean score 4.63, SD 0.38 out of 5), appropriate (mean score 4.63, SD 0.38 out of 5), and feasible (mean score 4.58, SD 0.34 out of 5). CONCLUSIONS: We describe a detailed example of using IM and the taxonomy of BCTs for designing and developing a digital intervention to support people after stroke in managing chronic symptoms and maintaining active participation in daily life

    Utilization of a novel digital measurement tool for quantitative assessment of upper extremity motor dexterity: a controlled pilot study

    Get PDF
    BACKGROUND: The current methods of assessing motor function rely primarily on the clinician’s judgment of the patient’s physical examination and the patient’s self-administered surveys. Recently, computerized handgrip tools have been designed as an objective method to quantify upper-extremity motor function. This pilot study explores the use of the MediSens handgrip as a potential clinical tool for objectively assessing the motor function of the hand. METHODS: Eleven patients with cervical spondylotic myelopathy (CSM) were followed for three months. Eighteen age-matched healthy participants were followed for two months. The neuromotor function and the patient-perceived motor function of these patients were assessed with the MediSens device and the Oswestry Disability Index respectively. The MediSens device utilized a target tracking test to investigate the neuromotor capacity of the participants. The mean absolute error (MAE) between the target curve and the curve tracing achieved by the participants was used as the assessment metric. The patients’ adjusted MediSens MAE scores were then compared to the controls. The CSM patients were further classified as either “functional” or “nonfunctional” in order to validate the system’s responsiveness. Finally, the correlation between the MediSens MAE score and the ODI score was investigated. RESULTS: The control participants had lower MediSens MAE scores of 8.09%±1.60%, while the cervical spinal disorder patients had greater MediSens MAE scores of 11.24%±6.29%. Following surgery, the functional CSM patients had an average MediSens MAE score of 7.13%±1.60%, while the nonfunctional CSM patients had an average score of 12.41%±6.32%. The MediSens MAE and the ODI scores showed a statistically significant correlation (r=-0.341, p<1.14×10(-5)). A Bland-Altman plot was then used to validate the agreement between the two scores. Furthermore, the percentage improvement of the the two scores after receiving the surgical intervention showed a significant correlation (r=-0.723, p<0.04). CONCLUSIONS: The MediSens handgrip device is capable of identifying patients with impaired motor function of the hand. The MediSens handgrip scores correlate with the ODI scores and may serve as an objective alternative for assessing motor function of the hand. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1743-0003-11-121) contains supplementary material, which is available to authorized users

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    • 

    corecore