940 research outputs found

    Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus

    Get PDF
    BACKGROUND: Antigenic diversity in dengue virus strains has been studied, but large-scale and detailed systematic analyses have not been reported. In this study, we report a bioinformatics method for analyzing viral antigenic diversity in the context of T-cell mediated immune responses. We applied this method to study the relationship between short-peptide antigenic diversity and protein sequence diversity of dengue virus. We also studied the effects of sequence determinants on viral antigenic diversity. Short peptides, principally 9-mers were studied because they represent the predominant length of binding cores of T-cell epitopes, which are important for formulation of vaccines. RESULTS: Our analysis showed that the number of unique protein sequences required to represent complete antigenic diversity of short peptides in dengue virus is significantly smaller than that required to represent complete protein sequence diversity. Short-peptide antigenic diversity shows an asymptotic relationship to the number of unique protein sequences, indicating that for large sequence sets (~200) the addition of new protein sequences has marginal effect to increasing antigenic diversity. A near-linear relationship was observed between the extent of antigenic diversity and the length of protein sequences, suggesting that, for the practical purpose of vaccine development, antigenic diversity of short peptides from dengue virus can be represented by short regions of sequences (~<100 aa) within viral antigens that are specific targets of immune responses (such as T-cell epitopes specific to particular human leukocyte antigen alleles). CONCLUSION: This study provides evidence that there are limited numbers of antigenic combinations in protein sequence variants of a viral species and that short regions of the viral protein are sufficient to capture antigenic diversity of T-cell epitopes. The approach described herein has direct application to the analysis of other viruses, in particular those that show high diversity and/or rapid evolution, such as influenza A virus and human immunodeficiency virus (HIV)

    Origin of electrochemical activity in nano-Li2MnO3; Stabilization via a 'point defect scaffold'

    Get PDF
    Molecular dynamics (MD) simulations of the charging of Li2MnO3 reveal that the reason nanocrystalline-Li2MnO3 is electrochemically active, in contrast to the parent bulk-Li2MnO3, is because in the nanomaterial the tunnels, in which the Li ions reside, are held apart by Mn ions, which act as a pseudo 'point defect scaffold'. The Li ions are then able to diffuse, via a vacancy driven mechanism, throughout the nanomaterial in all spatial dimensions while the 'Mn defect scaffold' maintains the structural integrity of the layered structure during charging. Our findings reveal that oxides, which comprise cation disorder, can be potential candidates for electrodes in rechargeable Li-ion batteries. Moreover, we propose that the concept of a 'point defect scaffold' might manifest as a more general phenomenon, which can be exploited to engineer, for example, two or three-dimensional strain within a host material and can be fine-tuned to optimize properties, such as ionic conductivity

    Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    Get PDF
    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior

    The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite temperature?

    Full text link
    We have studied the magnetotransport properties of a high mobility two-dimensional hole gas (2DHG) system in a 10nm GaAs quantum well (QW) with densities in range of 0.7-1.6*10^10 cm^-2 on the metallic side of the zero-field 'metal-insulator transition' (MIT). In a parallel field well above B_c that suppresses the metallic conductivity, the 2DHG exhibits a conductivity g(T)~0.3(e^2/h)lnT reminiscent of weak localization. The experiments are consistent with the coexistence of two phases in our system: a metallic phase and a weakly insulating Fermi liquid phase having a percolation threshold close to B_c

    The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins

    Get PDF
    Background The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. Results The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. Conclusions Cry6 proteins are members of the alpha helical pore-forming toxins – a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities

    RNA Polymerase II Binding Patterns Reveal Genomic Regions Involved in MicroRNA Gene Regulation

    Get PDF
    MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Due to the poor annotation of primary microRNA (pri-microRNA) transcripts, the precise location of promoter regions driving expression of many microRNA genes is enigmatic. This deficiency hinders our understanding of microRNA-mediated regulatory networks. In this study, we develop a computational approach to identify the promoter region and transcription start site (TSS) of pri-microRNAs actively transcribed using genome-wide RNA Polymerase II (RPol II) binding patterns derived from ChIP-seq data. Based upon the assumption that the distribution of RPol II binding patterns around the TSS of microRNA and protein coding genes are similar, we designed a statistical model to mimic RPol II binding patterns around the TSS of highly expressed, well-annotated promoter regions of protein coding genes. We used this model to systematically scan the regions upstream of all intergenic microRNAs for RPol II binding patterns similar to those of TSS from protein coding genes. We validated our findings by examining the conservation, CpG content, and activating histone marks in the identified promoter regions. We applied our model to assess changes in microRNA transcription in steroid hormone-treated breast cancer cells. The results demonstrate many microRNA genes have lost hormone-dependent regulation in tamoxifen-resistant breast cancer cells. MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial measurements regarding the initiation of transcription, and therefore allows comparison of transcription activities between different conditions, such as normal and disease states

    A Mutational Analysis of Residues Essential for Ligand Recognition at the Human P2Y 1 Receptor

    Get PDF
    We conducted a mutational analysis of residues potentially involved in the adenine nucleotide binding pocket of the human P2Y1 receptor. Mutated receptors were expressed in COS-7 cells with an epitope tag that permitted confirmation of expression in the plasma membrane, and agonist-promoted inositol phosphate accumulation was assessed as a measure of receptor activity. Residues in transmembrane helical domains (TMs) 3, 5, 6, and 7 predicted by molecular modeling to be involved in ligand recognition were replaced with alanine and, in some cases, by other amino acids. The potent P2Y1 receptor agonist 2-methylthio-ATP (2-MeSATP) had no activity in cells expressing the R128A, R310A, and S314A mutant receptors, and a markedly reduced potency of 2-MeSATP was observed with the K280A and Q307A mutants. These results suggest that residues on the exofacial side of TM3 and TM7 are critical determinants of the ATP binding pocket. In contrast, there was no change in the potency or maximal effect of 2-MeSATP with the S317A mutant receptor. Alanine replacement of F131, H132, Y136, F226, or H277 resulted in mutant receptors that exhibited a 7–18-fold reduction in potency compared with that observed with the wild-type receptor. These residues thus seem to subserve a less important modulatory role in ligand binding to the P2Y1 receptor. Because changes in the potency of 2-methylthio-ADP and 2-(hexylthio)-AMP paralleled the changes in potency of 2-MeSATP at these mutant receptors, the β- and γ-phosphates of the adenine nucleotides seem to be less important than the α-phosphate in ligand/P2Y1 receptor interactions. However, T221A and T222A mutant receptors exhibited much larger reductions in triphosphate (89- and 33-fold versus wild-type receptors, respectively) than in diphosphate or monophosphate potency. This result may be indicative of a greater role of these TM5 residues in γ-phosphate recognition. Taken together, the results suggest that the adenosine and α-phosphate moieties of ATP bind to critical residues in TM3 and TM7 on the exofacial side of the human P2Y1 receptor

    Genetic and Non-genetic Predictors of LINE-1 Methylation in Leukocyte DNA.

    Get PDF
    Background: Altered DNA methylation has been associated with various diseases. Objective: We evaluated the association between levels of methylation in leukocyte DNA at long interspersed nuclear element 1 (LINE-1) and genetic and non-genetic characteristics of 892 control participants from the Spanish Bladder Cancer/EPICURO study. Methods: We determined LINE-1 methylation levels by pyrosequencing. Individual data included demographics, smoking status, nutrient intake, toenail concentrations of 12 trace elements, xenobiotic metabolism gene variants, and 515 polymorphisms among 24 genes in the one-carbon metabolism pathway. To assess the association between LINE-1 methylation levels (percentage of methylated cytosines) and potential determinants, we estimated beta coefficients (βs) by robust linear regression. Results: Women had lower levels of LINE-1 methylation than men (β = –0.7, p = 0.02). Persons who smoked blond tobacco showed lower methylation than nonsmokers (β = –0.7, p = 0.03). Arsenic toenail concentration was inversely associated with LINE-1 methylation (β = –3.6, p = 0.003). By contrast, iron (β = 0.002, p = 0.009) and nickel (β = 0.02, p = 0.004) were positively associated with LINE-1 methylation. Single nucleotide polymorphisms (SNPs) in DNMT3A (rs7581217-per allele, β = 0.3, p = 0.002), TCN2 (rs9606756-GG, β = 1.9, p = 0.008; rs4820887-AA, β = 4.0, p = 4.8 × 10–7; rs9621049-TT, β = 4.2, p = 4.7 × 10–9), AS3MT (rs7085104-GG, β = 0.7, p = 0.001), SLC19A1 (rs914238, TC vs. TT: β = 0.5 and CC vs. TT: β = –0.3, global p = 0.0007) and MTHFS (rs1380642, CT vs. CC: β = 0.3 and TT vs. CC; β = –0.8, global p = 0.05) were associated with LINE-1 methylation. Conclusions: We identified several characteristics, environmental factors, and common genetic variants that predicted DNA methylation among study participants.This work was partially supported by the Association for International Cancer Research (AICR; grant 09-0780, and a doctoral scholarship awarded to S.M.T.); Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, MINECO, Spain (grants 00/0745, PI051436, PI061614, PI09-02102, and G03/174); Red Temática de Investigación Cooperativa en Cáncer (grant RD06/0020-RTICC); the U.S. National Institutes of Health (grant RO1-CA089715); a postdoctoral fellowship awarded to A.F.S.A. from the Fundación Científica de la AECC; Fundació Marató TV3; and The Johns Hopkins University Vredenburg Scholarship awarded to A.L.C
    corecore