960 research outputs found

    Prediction of gas-liquid two-phase flow regime in microgravity

    Get PDF
    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations

    An Agent Based Market Design Methodology for Combinatorial Auctions

    Get PDF
    Auction mechanisms have attracted a great deal of interest and have been used in diverse e-marketplaces. In particular, combinatorial auctions have the potential to play an important role in electronic transactions. Therefore, diverse combinatorial auction market types have been proposed to satisfy market needs. These combinatorial auction types have diverse market characteristics, which require an effective market design approach. This study proposes a comprehensive and systematic market design methodology for combinatorial auctions based on three phases: market architecture design, auction rule design, and winner determination design. A market architecture design is for designing market architecture types by Backward Chain Reasoning. Auction rules design is to design transaction rules for auctions. The specific auction process type is identified by the Backward Chain Reasoning process. Winner determination design is about determining the decision model for selecting optimal bids and auctioneers. Optimization models are identified by Forward Chain Reasoning. Also, we propose an agent based combinatorial auction market design system using Backward and Forward Chain Reasoning. Then we illustrate a design process for the general n-bilateral combinatorial auction market. This study serves as a guideline for practical implementation of combinatorial auction markets design.Combinatorial Auction, Market Design Methodology, Market Architecture Design, Auction Rule Design, Winner Determination Design, Agent-Based System

    Classification of Radiology Reports Using Neural Attention Models

    Full text link
    The electronic health record (EHR) contains a large amount of multi-dimensional and unstructured clinical data of significant operational and research value. Distinguished from previous studies, our approach embraces a double-annotated dataset and strays away from obscure "black-box" models to comprehensive deep learning models. In this paper, we present a novel neural attention mechanism that not only classifies clinically important findings. Specifically, convolutional neural networks (CNN) with attention analysis are used to classify radiology head computed tomography reports based on five categories that radiologists would account for in assessing acute and communicable findings in daily practice. The experiments show that our CNN attention models outperform non-neural models, especially when trained on a larger dataset. Our attention analysis demonstrates the intuition behind the classifier's decision by generating a heatmap that highlights attended terms used by the CNN model; this is valuable when potential downstream medical decisions are to be performed by human experts or the classifier information is to be used in cohort construction such as for epidemiological studies

    Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses

    Get PDF
    In this communication, we present an analytic expression of the thermal load in a cylindrical laser rod. We consider a pump beam with Gaussian temporal and spatial profile, which permits, using superposition of the single pulse solution, an explicit calculation of the optical path length difference across the radial direction of the rod and of the transient thermal focal length changes for a variable pump repetition rate and pulse width. We have chosen to model Ti:A_l2O_3 as a specific example, however our solution is completely general and can be applied to any materials with cylindrical geometry employing a stable laser cavity design

    Effect of Thermal Non-Equilibrium on Convective Instability in a Ferromagnetic Fluid-Saturated Porous Medium

    Get PDF
    The effect of local thermal non-equilibrium (LTNE) on the onset of thermomagnetic convection in a ferromagnetic fluid-saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. A modified Forchheimer-extended Darcy equation is employed to describe the flow in the porous medium, and a two-field model is used for temperature representing the solid and fluid phases separately. It is found that both the critical Darcy–Rayleigh number and the corresponding wave number are modified by the LTNE effects. Asymptotic solutions for both small and large values of scaled interphase heat transfer coefficient Ht are presented and compared with those computed numerically. An excellent agreement is obtained between the asymptotic and the numerical results. Besides, the influence of magnetic parameters on the instability of the system is also discussed. The available results in the literature are recovered as particular cases from the present study

    Facile and time-resolved chemical growth of nanoporous CaxCoO2 thin films for flexible and thermoelectric applications

    Full text link
    CaxCoO2 thin films can be promising for widespread flexible thermoelectric applications in a wide temperature range from room-temperature self-powered wearable applications (by harvesting power from body heat) to energy harvesting from hot surfaces (e.g., hot pipes) if a cost-effective and facile growth technique is developed. Here, we demonstrate a time resolved, facile and ligand-free soft chemical method for the growth of nanoporous Ca0.35CoO2 thin films on sapphire and mica substrates from a water-based precursor ink, composed of in-situ prepared Ca2+-DMF and Co2+-DMF complexes. Mica serves as flexible substrate as well as sacrificial layer for film transfer. The grown films are oriented and can sustain bending stress until a bending radius of 15 mm. Despite the presence of nanopores, the power factor of Ca0.35CoO2 film is found to be as high as 0.50 x 10-4 Wm-1K-2 near room temperature. The present technique, being simple and fast to be potentially suitable for cost-effective industrial upscaling.Comment: 16 pages, 5 figure

    Onset of Thermogravitational Convection in a Ferrofluid Layer with Temperature Dependent Viscosity

    Get PDF
    The onset of thermogravitational convection in a horizontal ferrofluid layer is investigated with viscosity depending exponentially on temperature. The bounding surfaces of the ferrofluid layer are considered to be either stress free or rigid-ferromagnetic and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also by a regular perturbation technique for different types of velocity boundary conditions, namely free-free, rigid-rigid, and lower rigid- upper free. It is observed that increasing the viscosity parameter, ΛΛ, and the magnetic number, M1M1, is to hasten the onset of ferroconvection, while the nonlinearity of fluid magnetization, M3M3, is found to have no influence on the stability of the system. The critical stability parameters are found to be the same in the limiting cases of either no magnetic forces or no buoyancy forces
    • …
    corecore