788 research outputs found

    Particulate Matter Containing Environmentally Persistent Free Radicals and Adverse Infant Respiratory Health Effects: A Review

    Get PDF
    The health impacts of airborne particulate matter (PM) are of global concern, and the direct implications to the development/exacerbation of lung disease are immediately obvious. Most studies to date have sought to understand mechanisms associated with PM exposure in adults/adult animal models; however, infants are also at significant risk for exposure. Infants are affected differently than adults due to drastic immaturities, both physiologically and immunologically, and it is becoming apparent that they represent a critically understudied population. Highlighting our work funded by the ONES award, in this review we argue the understated importance of utilizing infant models to truly understand the etiology of PM-induced predisposition to severe, persistent lung disease. We also touch upon various mechanisms of PM-mediated respiratory damage, with a focus on the emerging importance of environmentally persistent free radicals (EPFRs) ubiquitously present in combustion-derived PM. In conclusion, we briefly comment on strengths/challenges facing current PM research, while giving perspective on how we may address these challenges in the future. © 2012 Wiley Periodicals, Inc

    Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis

    Get PDF
    Many subproblems in automated skin lesion diagnosis (ASLD) can be unified under a single generalization of assigning a label, from an predefined set, to each pixel in an image. We first formalize this generalization and then present two probabilistic models capable of solving it. The first model is based on independent pixel labeling using maximum a-posteriori (MAP) estimation. The second model is based on conditional random fields (CRFs), where dependencies between pixels are defined using a graph structure. Furthermore, we demonstrate how supervised learning and an appropriate training set can be used to automatically determine all model parameters. We evaluate both models' ability to segment a challenging dataset consisting of 116 images and compare our results to 5 previously published methods

    Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection

    Get PDF
    © 2014 Lee et al. Background: Exposures to elevated levels of particulate matter (PM) enhance severity of influenza virus infection in infants. The biological mechanism responsible for this phenomenon is unknown. The recent identification of environmentally persistent free radicals (EPFRs) associated with PM from a variety of combustion sources suggests its role in the enhancement of influenza disease severity. Methods: Neonatal mice (\u3c seven days of age) were exposed to DCB230 (combustion derived PM with a chemisorbed EPFR), DCB50 (non-EPFR PM sample), or air for 30 minutes/day for seven consecutive days. Four days post-exposure, neonates were infected with influenza intranasally at 1.25 TCID50/neonate. Neonates were assessed for morbidity (% weight gain, peak pulmonary viral load, and viral clearance) and percent survival. Lungs were isolated and assessed for oxidative stress (8-isoprostanes and glutathione levels), adaptive immune response to influenza, and regulatory T cells (Tregs). The role of the EPFR was also assessed by use of transgenic mice expressing human superoxide dismutase 2. Results: Neonates exposed to EPFRs had significantly enhanced morbidity and decreased survival following influenza infection. Increased oxidative stress was also observed in EPFR exposed neonates. This correlated with increased pulmonary Tregs and dampened protective T cell responses to influenza infection. Reduction of EPFR-induced oxidative stress attenuated these effects. Conclusions: Neonatal exposure to EPFR containing PM resulted in pulmonary oxidative stress and enhanced influenza disease severity. EPFR-induced oxidative stress resulted in increased presence of Tregs in the lungs and subsequent suppression of adaptive immune response to influenza

    Modelling and control of a multi-stage interleaved DC-DC converter with coupled inductors for super-capacitor energy storage system

    Get PDF
    Interleaved converters with coupled inductors are widely used to share load current in high power applications. It offers high equivalent switching frequency and reduced output current ripples using small size magnetic components. Due to smaller common-mode inductance, control system can be designed to achieve fast dynamic response. This paper proposes 8 channel interleaved DC/DC converter for interfacing super-capacitor energy storage system to a 400V DC voltage bus. Multi-stage interleaving magnetic circuit with two-phase coupling inductor as a building block is proposed. A methodology is developed to construct the model of the multi-stage magnetic circuit from the basic two-phase coupled inductor model. The derived model is successfully used to evaluate the system power losses and to design the magnetic circuit parameters and its current controller to fulfil the DC/DC converter steady state and dynamic performance specifications. A 20kW/four stage/8 channel DC/DC converter laboratory prototype has been built to connect a super-capacitor stack to 400V DC voltage bus. Experimental investigation validates the modeling, the system losses calculations and the design specifications of the system

    Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection

    Get PDF
    Respiratory syncytial virus (RSV) infection is the number one cause of bronchiolitis in infants, yet no vaccines are available because of a lack of knowledge of the infant immune system. Using a neonatal mouse model, we previously revealed that mice initially infected with RSV as neonates develop Th2-biased immunopathophysiologies during reinfection, and we demonstrated a role for enhanced interleukin-4 receptor α (IL-4Rα) expression on T helper cells in these responses. Here we show that RSV infection in neonates induced limited type I interferon (IFN) and plasmacytoid dendritic cell (pDC) responses. IFN alpha (IFN-α) treatment or adoptive transfer of adult pDCs capable of inducing IFN-α prior to neonatal RSV infection decreased Th2-biased immunopathogenesis during reinfection. A reduced viral load and downregulation of IL-4Rα on Th2 cells were observed in IFN- α-treated neonatal mice, suggesting dual mechanisms of action. © 2014, American Society for Microbiology

    IL-4Rα on CD4\u3csup\u3e+\u3c/sup\u3e T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates

    Get PDF
    RSV is the major cause of severe bronchiolitis in infants, and severe bronchiolitis as a result of RSV is associated with subsequent asthma development. A biased Th2 immune response is thought to be responsible for neonatal RSV pathogenesis; however, molecular mechanisms remain elusive. Our data demonstrate, for the first time, that IL-4Rα is up-regulated in vitro on human CD4+ T cells from cord blood following RSV stimulation and in vivo on mouse pulmonary CD4+ T cells upon reinfection of mice, initially infected as neonates. Th cell-specific deletion of Il4ra attenuated Th2 responses and abolished the immunopathophysiology upon reinfection, including airway hyper-reactivity, eosinophilia, and mucus hyperproduction in mice infected initially as neonates. These findings support a pathogenic role for IL-4Rα on Th cells following RSV reinfection of mice initially infected as neonates; more importantly, our data from human cells suggest that the same mechanism occurs in humans

    IL-4Rα on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection

    Get PDF
    © Society for Leukocyte Biology. Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis in children, and severe RSV infection early in life has been associated with asthma development. Using a neonatal mouse model, we have shown that down-regulation of IL-4 receptor α (IL-4Rα) with antisense oligonucleotides in the lung during neonatal infection protected from RSV immunopathophysiology. Significant down-regulation of IL-4Rα was observed on pulmonary CD11b+ myeloid dendritic cells (mDCs) suggesting a role for IL-4Rα on mDCs in the immunopathogenesis of neonatal RSV infection. Here, we demonstrated that neonatal CD11b+ mDCs expressed higher levels of IL-4Rα than their adult counterparts. Because CD11b+ mDCs mainly present antigens to CD4+ T cells, we hypothesized that increased expression of IL- 4Rα on neonatal CD11b+ mDCs was responsible for Th2 - biased RSV immunopathophysiology. Indeed, when IL-4Rα was selectively deleted from CD11b+ mDCs, the immunopathophysiology typically observed following RSV reinfection was ablated, including Th2 inflammation, airway-mucus hyperproduction, and pulmonary dysfunction. Further, overexpression of IL-4Rα on adult CD11b+ DCs and their adoptive transfer into adult mice was able to recapitulate the Th2-biased RSV immunopathology typically observed only in neonates infected with RSV. IL-4Rα levels on CD11c+ cells were inversely correlated with maturation status of CD11b+ mDCs upon RSV infection. Our data demonstrate that developmentally regulated IL-4Rα expression is critical for the maturity of pulmonary CD11b+ mDCs and the Th2-biased immunopathogenesis of neonatal RSV infection

    Hematopoietic Cell–Restricted Deletion of CD36 Reduces High-Fat Diet–Induced Macrophage Infiltration and Improves Insulin Signaling in Adipose Tissue

    Get PDF
    OBJECTIVE: The fatty acid translocase and scavenger receptor CD36 is important in the recognition and uptake of lipids. Accordingly, we hypothesized that it plays a role in saturated fatty acid-induced macrophage lipid accumulation and proinflammatory activation. RESEARCH DESIGN AND METHODS: In vitro, the effect of CD36 inhibition and deletion in lipid-induced macrophage inflammation was assessed using the putative CD36 inhibitor, sulfosuccinimidyl oleate (SSO), and bone marrow-derived macrophages from mice with (CD36KO) or without (wild-type) global deletion of CD36. To investigate whether deletion of macrophage CD36 would improve insulin sensitivity in vivo, wild-type mice were transplanted with bone marrow from CD36KO or wild-type mice and then fed a standard or high-fat diet (HFD) for 20 weeks. RESULTS: SSO treatment markedly reduced saturated fatty acid-induced lipid accumulation and inflammation in RAW264.7 macrophages. Mice harboring CD36-specific deletion in hematopoietic-derived cells (HSC CD36KO) fed an HFD displayed improved insulin signaling and reduced macrophage infiltration in adipose tissue compared with wild-type mice, but this did not translate into protection against HFD-induced whole-body insulin resistance. Contrary to our hypothesis and our results using SSO in RAW264.7 macrophages, neither saturated fatty acid-induced lipid accumulation nor inflammation was reduced when comparing CD36KO with wild-type bone marrow-derived macrophages. CONCLUSIONS: Although CD36 does not appear important in saturated fatty acid-induced macrophage lipid accumulation, our study uncovers a novel role for CD36 in the migration of proinflammatory phagocytes to adipose tissue in obesity, with a concomitant improvement in insulin action

    MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1.

    Get PDF
    Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR\u27s 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine\u27s consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3′-untranslated region by miR27a. Interestingly miR27a was found to positively regulateSerpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine

    Organocations in Zeolite Synthesis: Fused Bicyclo [l.m.0] Cations and the Discovery of Zeolite SSZ-48

    Get PDF
    A set of zeolite synthesis experiments is described where lattice substitution is varied in the context of the structure of particular structure-directing organocations (at times referred to as templates). In this particular series, the organocations are constructed as members of a fused bicyclo organonitrogen class of compounds, described as having ring construction [l.m.n], where n = 0. We show that these compounds can best be achieved from starting cyclic ketones that are converted to imines via a Beckman rearrangement reaction. A particular approach to the Beckmann reaction works best in our hands. In some instances isomeric organocations are made and separated. Often their use in zeolite synthesis led to different products. There is a high correlation for the space-filling details of the guest organocations and the type of crystalline host lattice developed in the synthesis. In one instance involving isomers of a decahydroquinoline derivative, a new zeolite, SSZ-48, is discovered and contains only one of the isomers. Characterization of the isomers and their use in the zeolites is followed by 13C MAS NMR analyses. Some details of the new zeolite are given and it is shown that a reasonable symmetry operation predicting a 14-ring zeolite could be generated under similar conditions to SSZ-48 (a 12-ring zeolite)
    corecore