32 research outputs found

    A computationally-enhanced hiCLIP atlas reveals Staufen1-RNA binding features and links 3′ UTR structure to RNA metabolism

    Get PDF
    The structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data. We present Tosca, a Nextflow computational pipeline for the processing, analysis and visualisation of proximity ligation sequencing data generally. We use our extended duplex atlas to discover insights into the RNA selectivity of STAU1, revealing the importance of structural symmetry and duplex-span-dependent nucleotide composition. Furthermore, we identify heterogeneity in the relationship between transcripts with STAU1-bound 3' UTR duplexes and metabolism of the associated RNAs that we relate to RNA structure: transcripts with short-range proximal 3' UTR duplexes have high degradation rates, but those with long-range duplexes have low rates. Overall, our work enables the integrative analysis of proximity ligation data delivering insights into specific features and effects of RBP-RNA structure interactions

    Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

    Get PDF
    BACKGROUND: Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS: Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE: Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning

    TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A

    Get PDF
    Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies

    Simian Varicella Virus Infection of Rhesus Macaques Recapitulates Essential Features of Varicella Zoster Virus Infection in Humans

    Get PDF
    Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation

    HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion.

    No full text
    Enhanced expression of the cold-shock protein RNA binding motif 3 (RBM3) is highly neuroprotective both in vitro and in vivo. Whilst upstream signalling pathways leading to RBM3 expression have been described, the precise molecular mechanism of RBM3 cold induction remains elusive. To identify temperature-dependent modulators of RBM3, we performed a genome-wide CRISPR-Cas9 knockout screen using RBM3-reporter human iPSC-derived neurons. We found that RBM3 mRNA and protein levels are robustly regulated by several splicing factors, with heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) being the strongest positive regulator. Splicing analysis revealed that moderate hypothermia significantly represses the inclusion of a poison exon, which, when retained, targets the mRNA for nonsense-mediated decay. Importantly, we show that HNRNPH1 mediates this cold-dependent exon skipping via its thermosensitive interaction with a G-rich motif within the poison exon. Our study provides novel mechanistic insights into the regulation of RBM3 and provides further targets for neuroprotective therapeutic strategies
    corecore