202,842 research outputs found
Coherence scale of the two-dimensional Kondo Lattice model
A doped hole in the two-dimensional half-filled Kondo lattice model with
exchange J and hopping t has momentum (pi,pi) irrespective of the coupling J/t.
The quasiparticle residue of the doped hole, Z_{(\pi, \pi)}, tracks the Kondo
scale, T_K, of the corresponding single impurity model. Those results stem from
high precision quantum Monte Carlo simulations on lattices up to 12 X 12.
Accounting for small dopings away from half-filling within a rigid band
approximation, this result implies that the effective mass of the charge
carriers at the Fermi level tracks 1/T_K or equivalently that the coherence
temperature T_{coh} \propto T_K. This results is consistent with the large-N
saddle point of the SU(N) symmetric Kondo lattice model.Comment: 4 pages, 4 figure
Development of the L-1011 four-dimensional flight management system
The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized
Aircraft adaptive learning control
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed
Particle-in-cell and weak turbulence simulations of plasma emission
The plasma emission process, which is the mechanism for solar type II and
type III radio bursts phenomena, is studied by means of particle-in-cell and
weak turbulence simulation methods. By plasma emission, it is meant as a loose
description of a series of processes, starting from the solar flare associated
electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent
partial conversion of beam energy into the radiation energy by nonlinear
processes. Particle-in-cell (PIC) simulation is rigorous but the method is
computationally intense, and it is difficult to diagnose the results. Numerical
solution of equations of weak turbulence (WT) theory, termed WT simulation, on
the other hand, is efficient and naturally lends itself to diagnostics since
various terms in the equation can be turned on or off. Nevertheless, WT theory
is based upon a number of assumptions. It is, therefore, desirable to compare
the two methods, which is carried out for the first time in the present paper
with numerical solutions of the complete set of equations of the WT theory and
with two-dimensional electromagnetic PIC simulation. Upon making quantitative
comparisons it is found that WT theory is largely valid, although some
discrepancies are also found. The present study also indicates that it requires
large computational resources in order to accurately simulate the radiation
emission processes, especially for low electron beam speeds. Findings from the
present paper thus imply that both methods may be useful for the study of solar
radio emissions as they are complementary.Comment: 21 pages, 9 figure
Reply to "Comment on 'Scalar-tensor gravity coupled to a global monopole and flat rotation curves' "
In Brans-Dicke theory of gravity we explain how the extra constant value in
the formula for rotation velocities of stars in a galactic halo can be obtained
due to the global monopole field. We argue on a few points of the preceding
Comment and discuss improvement of our model.Comment: 4 pages, RevTeX4 fil
Theory for Gossamer and Resonating Valence Bond Superconductivity
We use an effective Hamiltonian for two-dimensional Hubbard model including
an antiferromagnetic spin-spin coupling term to study recently proposed
gossamer superconductivity. We formulate a renormalized mean field theory to
approximately take into account the strong correlation effect in the partially
projected Gutzwiller wavefucntions. At the half filled, there is a first order
phase transition to separate a Mott insulator at large Coulomb repulsion U from
a gossamer superconductor at small U. Away from the half filled,the Mott
insulator is evolved into an resonating valence bond state, which is
adiabatically connected to the gossamer superconductor.Comment: 10 pages, 13 figure
- …