-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Title Theory of Gossamer and resonating valence bond
superconductivity

Author(s) Gan, JY; Zhang, FC; Su, ZB

Physical Review B - Condensed Matter And Materials Physics,

Citation | 5005 v.71n. 1

Issued Date | 2005

URL http://hdl.handle.net/10722/43446

Rights Physical Review B (Condensed Matter and Materials Physics).
9 Copyright © American Physical Society.



https://core.ac.uk/display/37882743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICAL REVIEW B 71, 014508(2005
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We use an effective Hamiltonian for two-dimensional Hubbard model including an antiferromagnetic spin-
spin coupling term to study recently proposed Gossamer superconductivity. We apply a renormalized mean
field theory to approximately take into account the strong correlation effect in partially projected Gutzwiller
wave functions. At the half-filling, there is a first order phase transition to separate a Mott insulator at large
Coulomb repulsiorlJ from a Gossamer superconductor at snllAt the critical valueU=U,, the charge
carrier density and the superconductif8C) order parameter change discontinuously from zero in the Mott
insulating phase to finite values in the Gossamer SC phase. The first order transition is due to the interplay of
the kinetic and spin exchange energies. As the electron density changes away from half-filling, the Gossamer
SC state changes smoothly, while the Mott insulator is evolved into a resonating valend&RU&)EC state.

The Gossamer and RVB SC states have the same pairing symmetry. The SC order parameter changes smoothly
from a RVB SC state dt) > U, to a Gossamer SC stateld< U, at a fixed nonhalf-filled electron density. We
argue that the RVB SC state is smoothly connected to the Gossamer SC state, hence to the BCS state.

DOI: 10.1103/PhysRevB.71.014508 PACS nun®er75.10.Jm, 05.30.Pr

[. INTRODUCTION showed that the SC ground state requires a large attractive

interaction in addition to a large on-site Coulomb repulsion.

Since the discovery of high temperature superconductivity In @ previous short papét,one of us(F.C.Z) argued that

in the cuprate$? there have been a lot of theoretical efforts the effective Hamiltonian of the Hubbard model acting on

to understand its microscopic mechanism. One of the scdhe Gutzwiller's wave function should include a spin-spin
narios was initiated by Andersényho proposed the idea of coupling term, and that the on-site Coulomb repulsion gen-
a resonating valence borfVB) state for the observed un- ©rates an attractive pairing interaction in addition to the sup-
usual properties in these compounds. A minimum model foP'€SSion of electron’s onsite double occupation. Using

cuprates was proposed to be two-dimensional Hubbard or itgutzwiller variational method, it was demonstrated that the
equivalentt-J model in the largaJ limit.34 In the RVB pic- ground state at half-filled electron density is a Gossamer su-

. o . ! ._perconductor for smaller intrasite Coulomb repulsidrand
ture, each lattice site is either unoccupied or singly occupleg Mott insulator for largetU. The Gossamer SC state is

by a spin-up or spin-down electron. The spins are couple@i -

antlf_erromagngncally W!thOUt long range order. The Chargqnsulator and a superconductor at half-filled electron density
carriers move in the spin backgrpund and. condense t0 @S¢ also been studied by Baskafamho introduced a two-
perconductingSC) state*? In this scenario, the undoped speciest-J model and argued its superconductivity to be
cuprate with density of one electron per site is a Mott inSu-gjmilar to the RVB. More recently, Bernevigt al?® have
lator, and the superconductor is viewed as a doped Mott inexamined the instability of the Gossamer superconductivity
sulator. Many experimentally observed properties in Cutowards a magnetic insulator within the framework of
prates, such as thed-wave symmetry in super- Laughlin’s Gossamer Hamiltonig.
conductivity*14the pseudogap phenomeland the linear In this paper, we extend the idea explored in Ref. 24 to
doping dependence of the superfluid density in the understudy the phase transition in strongly correlated electron sys-
doped regiort® seem to be consistent with the RVB meantems in great detail. In particular, we use an effective Hub-
field theory, as discussed in a recent revie@n the other bard like HamiltonianEq. (1) below] in a square lattice to
hand, while mean field theories and variational calculationsystematically study the partially projected Gutzwiller wave
support the SC ground state in the doped Hubbard-dr function and the competition between the Mott insulator and
models, more direct numerical calculations on these modelthe superconductor. We use Gutzwiller’s approximation to
remain controversial and have been unable to provide unanteplace the strong correlation in the projected state by a set
biguous answers to this questibin?2 of renormalized factors, and to carry out a renormalized
Very recently, Laughlin has proposed an interesting noimean field theory numerically to study the ground state and
tion, the Gossamer superconductivity, for highh SC the elementary excited states of the system. Our main results
Cu-oxides®® In a Gossamer superconductor, the superfluiccan be summarized below. At the half-filling, the ground
density is tenuous, in contrast to the conventional supercorstate is a Mott insulator at largd, and a Gossamer super-
ductor. He proposed a partially Gutzwiller projected BCSconductor at smalU. The transition is the first type in the
wave function[Eqg. (2) below] to describe the Gossamer SC physically interesting parameter region. The charge carrier
state, and a Hamiltonian for which his wave function is andensity and the SC order parameter change discontinuously
exact ground state. By expanding that Hamiltonian, Laughlifrom zero in the Mott insulating phase to finite values in the
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SC state at the critical value &f. As the electron density the Hubbard model. The inclusion of the antiferromagnetic
changes away from half-filling, the Gossamer SC statespin coupling appears consistent with the weak coupling
changes smoothly, while the Mott insulating phase is evolvedenormalization group analysi8,and is appropriate in the
to the RVB SC state. The Gossamer and RVB SC states hawariational approach studied here. In the lirhit— o, the
the same pairing symmetry, and their SC order parametersodel is reduced to theJ model. While there is a lack of
are both suppressed by a unified renormalized factor, whicHerivation of the Hamiltoniargl) from the Hubbard model,
quantitatively characterizes the smallness of the superfluidve believe Eq(1) to be relevant to the physics of the Hub-
density. The SC order parameters in both RVB and Gossaméard model at largéJ including values near the transition
SC states are calculated and are found to change smoothbpints we are most interested in. Equatidn may be very
between the two states &b is varied at a fixed non-half- different from the Hubbard model at smadl, however.
filled electron density. We thus argue that the RVB SC stat&Keeping this in mind, below we shall consider Ei) from

is smoothly connected to the Gossamer SC gfa&ince a  a phenomenological point of view, and consideto be an
Gossamer SC state is adiabatically connected to a BCRidependent parameter, and study its solutions within the
state?® our theory suggests that the RVB SC state isframework of Gutzwiller’s variational approach.

smoothly connected to the BCS state. The Gossamer SC state Due to the perfect nesting and the van Hove singularity in
at half-filing may be viewed as a RVB state with equal num-the density of state, the ground state of Hamiltonianat
ber of independent empty and doubly occupied git¢ggom  half-filling (electron densityn=1 per sit¢ is an antiferro-
this point of view, the reduction dfi/t, which may be real- magnet for arbitrarily small value df in the absence of the
ized by applying the pressufeplays a similar role as the spin-spin coupling tern{J=0). In this paper, however, we
chemical doping. The Gossamer superconductivity may haveill not consider the magnetic long range order.

already been realized in organic superconductoféin the We study the model using a variational trial wave function
present paper, we focus on the SC and insulating propertiggoposed by Laughlif®

of the problem, and neglect the possible antiferromagnetism

in the model. [Weo =4 Wacs), 2
This paper is organized as follows: In Sec. Il, we intro-
duce the model and the variational wave function. In Sec. lll, m,= H (1 - anm), 3)
[

we formulate a renormalized mean field theory to study the

variational wave function. Section IV is devoted to the phase

transition between the Mott insulator and the Gossamer swith Vg9 @ BCS SC state, given by

perconductor at the half-filling. Detailed discussions on the

Gossamer and RVB SC states are given in Sec. V. The paper [Wece =T (g +vich i )0), (4)
is concluded with a summary in Sec. VI. K

where|0) is the vacuum, andi, anduv, are variational pa-

IIl. THE MODEL AND THE VARIATIONAL WAVE rameters, satisfying the condition
FUNCTION _
u?+ o= 1.

We study an effective Hubbard Hamiltonian in a squar

lattice eﬂa is a projection operator to partially project out the doubly

occupied electron states on each lattice isifene statdW o)
H=H,+Hs+Hy, may be considered as a generalization of the previously stud-
ied partially projected noninteracting electron st&t& to
include superconductivity. In the limiting casew,=0,

=— ol c . . ;
He=-2, (tCiCig + N C), |Weco is reduced to the noninteracting electron state, and

(iho

|q’Gs> - Ha|q,FL>a
He=32S S, _ _ _
(ij) where| W, ) is the ground state of the noninteracting electron
system, given byWg Y=1IIc} c,/0), and the product runs
_ k,o
Hu= Uzi Mg - @ over all thek’s inside the Fermi surfacéW o is a natural

generalization of conventional BCS state to strongly corre-
In the above equations;, is the annihilation operator of an |ated systems. It connects the BCS state to the RVB state,
electron of sping at the lattice sitd, and ni(,:ci’rgci(,. The and is characterized by the parametebetween 0 and 1.
sum is over the nearest neighbor pairs(ipf, andU>0is  «=0 corresponds to a conventional BCS stateaAtl, the
the intrasite Coulomb repulsion. We assutie0. The case projection operator projects out all the doubly occupied elec-
att<0 can be mapped onto the model with-0. In this  tron states, an¢iVso) is reduced to the RVB stafeAt the
Hamiltonian, we have introduced an antiferromagnetic spinhalf-filling and ata=1, each lattice site is occupied by a
spin coupling term to account for the effect of the virtual single electron, and the system is a Mott insulator. Therefore,
electron hopping process. In the largelimit, J=4t>/U.  the wave function W59 is suitable for studying
This model may be viewed as an effective Hamiltonian ofsuperconductor-insulator transition.
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IIl. THE RENORMALIZED MEAN FIELD THEORY 1 T 4
— §=00
We now proceed with the variational calculations to de- e §=0.1
termine the parameters and uy, v,. We consider the elec- o8 7S/ /11 \L___ §=0.2
tron densityn<1. The variational energy per siie=(H) is T la
given by 06 |
gt \\ gs
E= Ud+<Ht>+<HJ> (5) 0.4 \\\\
12
The first term in Eq(5) is the intrasite Coulomb interaction \\\
energy, while the second and the third terms are the average 0.2 \
kinetic and spin-spin correlation energies, respectivdly. ' N\
=(n;;n;)) is the average electron double occupation number, e oy 1
and is a function ofy, and O<d<1/4. We have denote®) 0 0.050.10.150.20.250 0.050.10.150.20.25
as the expectation value of the operafin the statd¥ ). d d

For briefness(Hy,(H,) stand for their average values per FIG. 1. Gutzwiller's renormalization factorgy and gs as

site. o ' . _ functions of double occupation numbérobtained from Eqs(7).
The variational calculations can be carried out usings=1-n.

variational Monte Carlo methdt$3-3> Here we use the
renormalized Hamiltonian approach to treat the projection
operator approximatefy/In this approach, the effect of the
projection operator is taken into account by a set of classical . .
statistical weighting factors, which multiplies the quantum '€ €xpectation value dfi in the state{¥cg) can thus be
coherent results of the nonprojected state. This metho valuated in terms of the expectation value-5fin the state
(Gutzwiller method hereaftgwvas proposed by Gutzwillét, Wgcs). We obtain,

and has been applied to study strongly correlated systems by

many authorg:3°32| et (Q), be the expectation value f in E=(H")o=Ud+ g(Hpo + gs(Ho- 9

the stateWgco), then the hopping energy and the spin-spin ) o o
correlation in the statVso) are related to those in the state In the renormalized Hamiltonian approach, the original

H' =gH+gsHs+ Hy. (8

|Wace) by variational parameter$a,v,,u,} are transformed into the
variational parameterd,v,,uc}. There is one-to-one corre-
<CiTa-Cja'> = gt<CiTg-Cja->Ov spondence betweem andd. Within the Gutzwiller approxi-
mation, one can analytically calculate=(n;;n; ), and one
_ finds 3132
(S-S =09«Si " So- (6)
The renormalized factorg, and g5 are determined by the 2= d(1-n+d)
; . . . 1l-a)©= > - (10
ratio of the probability of the physical processes in the states (n/2 —d)

|Wso and|¥gcg). Following the counting method described

in the literature, we have This relation is useful to make connections between the
- Gutzwiller method we adopt here where the partial projec-
_(n-2d)(Nd+\V1-n+ d)? tion is described byl and Laughlin’'s method where the par-
- (1-n/2)n ' tial projection is characterized ly.

The formalism below is similar to the renormalized mean
5 field theory developed for thed model except thadd may
- (n-2d) @) be nonzero in the present theory. We introduce a Lagrangian
® (1-n/2)°n? multiplier zz, and define

The expression fog;, is the same as in the early literatife. o~
In the limit d=0, Eqgs.(7) recover the results derived for the K=H"~ M(.Eg Mio = Ne)’ (11)
t-J model’ These renormalized factors quantitatively de-
scribe the correlation effect of the on-site repulsigps=1,
andg;<<1 at smalld and smallé, indicating the reduction of
the kinetic energy due to the projection=4,=1, andgg
=4 atd=0 andé=0, indicating the enhancement of the spin-
spin correlation due to the projection. In Fig. 1, we pipt 2> vﬁzn. (12
and gs as functions of the double occupation numblefor k
various electron densities.

In terms of these renormalization factors, we define a@Below we consider the casg andv, to be real. Evaluating
renormalized Hamiltonian, Eqg. (11) , we obtain(lattice constantl),

with N, the number of electrons. We then hawe(K),, sub-
ject to the conditionK)y/ du=0, or
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E=Ud+ 7+ 2> (g~ vg
k

+ E Vk_k/(vﬁvi, + UkUkUk/Ukr), (13)
K.k’
where
Vi = - 3gJ(cosk, + cosk,),
€ = — 2t(cosk, + cosk,). (14)

Carrying out the variational procedure with respectiand
vy, We obtain

U= 3(1+xi/Ey),

vi=3(1-xlE, (15)
where
Ev= Vi + AL (16)

The variational parametera, and y, are related to the
particle-particle pairing amplitudd, and the particle-hole
amplitudesy by

A=A, cosk, + A, cosk,,

Xk =€ — (xx COSKk, + x, COSK,). 17

PHYSICAL REVIEW Br1, 014508(2009

E =Ud - 4ngty — (3g.0/4) (A% + ¥?), (22)

where y and A are the solutions of the gap equations, and
both are functions ofl. In case Eq(21) has multiple solu-
tions for d, the ground state is determined by the global
energy minimum. Alternatively, we may solve the gap equa-
tions for given values ofl, and calculateE(d) to find the
optimal value ofd to determine the ground state and the
ground state energy. The chemical potential of the system,
u=dE/ldn, is given by

~, 90 90s
=+ —(Hpo+ —(Hyo. 23
M= (9n< o ﬁn< 2o (23
Note that chemical potential here is different from the La-
grangian multiplierz in the renormalized mean field theory,
because the renormalized factggsgs are also functions of
electron densityn.

IV. MOTT INSULATOR-GOSSAMER
SUPERCONDUCTOR TRANSITION

In this section, we discuss the variational solutions at the
half filled case. At the half-filling, the trial wave function
|W 9 describes either a Mott insulatordf=1 (i.e.,d=0), or
a SC state iv<1 (i.e.,d>0). If wis close to 1, od is very
close to zero|¥ e describes a Gossamer SC state.

We expect a Mott insulator at lardeé and a SC state at
smallU. This can be examined qualitatively without carrying

In the above equations, we have introduced two correlatio@ut the quantitative calculations. At the half-fillingg,

functions in the unprojected staft#'gco),

A =(Ci|Citrt ~ Ci1Cisr, o

X'r: 2 <CiTg-Ci+7'(T>01 (18)
with 7=Xx,y, the unit vectors on the lattice, and
‘6 = [~ 2g;t(cosk, + cosk,) — u]/(3g5/4). (19

For thed-wave pairing state, which is expected to have th

=8(1-2d)d, andgs=4(1-2d)%. Equation(21) becomes
U +8(1 —4d)(Hpo— 16(1 - 2d)(H;)o = 0. (24

Since both(H,)q and(H ), are finite, there will be no solution
of Eqg. (24) if U is sufficiently large. This indicates that the
ground state corresponds to eithesrO or d=d,, the al-
lowed maximum value ofl. The repulsive nature dff ex-
cludes the latter, and it follows that the Mott insulating state
with d=0 is the ground state. We believe that the qualitative

gesult for the existence of the Mott insulating phase at large

lowest energy within this class of states as suggested in tHaHt finite U is robust. Note that in the Gutzwiller's wave

previous studies for thé-J model7%103637we haveA,=

-Ay=A, and x,=x,=x. A and y are determined by the

coupled gap equations,

A= (cosk)A/Ey,
k

x = -2 (cosk) xi/Ey. (20)
K

function, the doubly occupied site and the empty site are not
correlated. At the half-fillingd represents the carrier density
n" and is proportional to the Drude weight in the a.c. con-
ductivity, n"é’/m’", with m" the effective mass. We remark
that the parametead in our Gutzwiller approach is different

from the usual double occupation numidgifor example, the
double occupation calculated in the exact diagonalization of

a finite size system In the latter casea also includes the
contribution from the virtual hopping process, hence the

These gap equations must be solved simultaneously with théouble occupied site can be bound to the empty site and the

hole concentration equation, E@.2) , which can be rewrit-

double occupation numbet does not represent the mobile

ten asé=2 y,/ Ey, with §=1-n. The variation with respect to carriers.

k
d leads to the equation

JE G d0s
—=U+—(Hpg+ —(Hjyy=0.
7d ad( 0 ad( Do

In terms ofy and A, the energy is given by

(21)

In the insulating phasel=0, so the Hamiltonian is re-
duced to a Heisenberg model. Within our mean field theory,

the RVB ground state energy is given by
Eo=—30(A3+ X5) (25)

with
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FIG. 2. Phase diagram at half-filling: Insulator at the upper part FIG. 4. d as a function olU at =0 andJ/t=1/3.

and superconductor at the lower part.

1 order in the casd=0, while it is first order for any small but
Ag= xo=C/\2=-=2] \cos k+cos k,=0.339. finite J/t.
V8 k Let us first discuss the first order phase transition in the
(26) region 0<J/t<2. In Fig. 3, we show the energi as a
function ofd at a typical parametel/t=1/3. Note thatE is

) ~not a monotonic function ofl around the critical point.
AtsmallU, one expects a metallic ground state, except in therhere is a local energy minimum aroude 0.02, which de-

special cases due to the band effect such as the von HOYPeIops to a global minimum as approachedJ.. from the
singularity and perfect nesting ir;. In this paper, we will g jat0r side. The local minimufE(d,) atd=d, represents a

. - - i ) lr’netallic solution, andE(d=0) represents an insulator solu-
insulator transition at a finite)=Us in the general case, with tion. The critical value for the Mott insulator and Gossamer
the metallic phase to be SC provided thigi, # 0. This is ) L ) .
the Mott insulator-Gossamer superconductor transition. superconductor transmon is determined by the condition
We now discuss the phase transition in detail. We solvé(do) =E(d=0). From Fig. 3, we haveJ./t=10.23 forJ/t
the gap equations for the fixetiand determine the transition =1/3. AtU>Uc, d=0, and the ground state is an insulator.
point U, and the nature of the transition. The phase diagranf\t U<U., d=d;~0.02, and the ground state is a Gossamer
in the parameter spadé and J/t is plotted in Fig. 2. The SC state. As we can see from Fig. dis approximately
critical U, separates the Mott insulating phase from the Goslinear in U except neat., where the discontinuity inl is
samer SC phase. We may choose the mobile carrier densigpout 0.02. We conclude that the Mott insulator-Gossamer
as the order parameter, which is proportionatit@he phase superconductor phase transition in this relevant region is first
transition is classified as second typelif- 0 and first type if ~ type. The carrier density is discontinuous at the phase tran-
d—d.>0 asU— U, from the metallic side. This classifica- sition point. Sincel is proportional to the carrier density, this
tion is consistent with the usual zero temperature quanturtype of first order transition should be observable in the elec-
phase transition, where the nature of the phase transition deric transport or in the ac conductivity measurements.
pends on the continuity or discontinuity of the order param-  For a large ratio ofJ/t, our calculations show that the
eter. We find the transition to be first order a0/t<7.,  phase transition is second order. This is illustrated in Fig. 5

and second order ap,<J/t, with 5.~2. At J=0, the for E vs d in the case ofl/t=3. The transition occurs at
present theory is reduced to the Brinkman-Rice theory foiy =2 58 andd changes continuously across.

metal-insulator transitiol for the projected noninteracting A special case i§=0. In this limit, [V c9 =11/ ¥g, ), and
electron state. In that case, we fiog/t=128/72. From Fig. our theory is reduced to the Brinkman-Rice theSryhe
2, we see that).(J— 0)=U(J=0), so that the critical value energy at the half-filling is given by

of U is continuous ad=0. However, the transition is second

-0.227 -2.045
5=0 _5.05 8=0 N=2.5

-0.228
< o -2055
T -0229 Ui=10.23 T Un=2.8
u W 208

—023 Un=10.20

—2.065
Un=2.4
-0.231 -2.07
0 0.01 0.02 0.03 0 001 002 003 004 0.05
d d
FIG. 3. The energ¥ as a function of double occupatiahfor FIG. 5. E as a function ofl for several values df aroundU., at

three values ot aroundU. at 6=0 andJ/t=1/3. 6=0 andJ/t=3.

014508-5



J. Y. GAN, F. C. ZHANG, AND Z. B. SU PHYSICAL REVIEW Br1, 014508(2009

E =Ud- 20, |cosk, + cosk,| = Ud - 128(1 — 2d)t/2. o
k 0.08
d
0.04
From this we findU,/t=128/7°~13.d is continuous atJ,,
so that the transition is a second type. 0.02 U/t=15
Our result on the first order phase transition in the physi- o
cally interesting regiorismall but nonzerd/t) is somewhat 0 005 01 015 02 025

unexpected. We argue that the first order transition between 8
the Mott insulator and the Gossamer superconductor is due g5 6 ¢ as a function ofs at J/t=1/3 for U= 8<U, andU
to the interplay of the kinetic and spin-spin correlation ener=5-y_
gies. This interplay was not included in the previous study of
the Gutzwiller approach but is taken into account here. To
illustrate this point, we consider the limiting case<0/t V. GOSSAMER AND RVB SUPERCONDUCTIVITY
<1, and expand the ener@yof Eq. (22) atn=1 for smalld,
In this section, we discuss the SC state at b&t® and
5>0. Note that at5>0, |9 always describes a metallic
E(d) =Eg+ (U - Ug)d - Bd? + O(d®), (28)  state. To make the terminology clear, we shall call the SC
state alJ <U, to be a Gossamer superconductot?and the
, ) doped Mott insulatof U>U. and 5§>0) to be the RVB SC
where E, is the energy atd=0 given by Eq.(25), Uy  stated
=16y2Ct-12C2] is the solution ofgE/d=0 atd=0, given We begin with the discussion of the double occupation
by Eq.(24). p=[32dx/d)_,~32y2C]t. TheJ dependence pymberd as a function of the hole concentration. We solve
in B has been neglected sindét<1. Note that the kinetic  the gap equations and find the optimal valueloThe results
energy is proportional ty. As d increases from Oy tends to  are plotted in Fig. 6. We find that is always nonzero aé
increase fromy,=C/+2 to gain more kinetic energy. There- >0, even in the regiot) > U,. This suggests that the doped
fore, dx/9d>0. In the limit J/t<1, we havedyx/dd=(x  Mott insulator is described by a partially projected state
= Xo)/d>t/J>1, hence the first term in the expression r [ o<1 in Eq. (2)]. Neverthelessd is very small forU
dominates ang3>0. This demonstrates thdt=0 is a local > U.. As we can see from Fig. @, varies from 0 to 0.01 for
maximum in energy atl=U., and the phase transition oc- U/t=15, which corresponds t&J/U.~1.5. The nonzero
curs at a large value dj corresponding t@>0 as numeri- value ofd at >0 may be understood from the variational
cally shown in Fig. 3, hence it is a first order transition. equation(21), which determinesl. At 5> 0, dg,/ dd|g=o— .
Numerically, we find thaj3=34.8 in the casd/t=1/3. Therefore,d=0 cannot be a solution of the equation, ahd
It is interesting to compare the Gossamer superconductormaust be finite. It remains to be seen if this result is due to the
Mott insulator transition with the metal-insulator transition Gutzwiller’s approximation used in our calculation. It will be
studied in previous literatur€.In the Brinkman-Rice theory, interesting to further examine this issue using other methods
the transition is second order. In that theory, as the systersuch as the variational Monte Carlo method.
approaches the insulating phase, the effective mass o. From Fig. 6, we also see that dsncreasesd increases
In the Gossamer superconductor-Mott insulator transitiorfor large U but decreases for small. The latter may be
with small ratio ofJ/t, the insulating phase is not character- understood as follows. In the small case, the correlation
ized by the divergence of the effective mass. We estimate theecomes less important, and the qualitative feature between
ratio of the effective mass to the band md4gt) at the d and 6 becomes similar to the uncorrelated state. For the
metallic side of transition point to be g/~ 1/(8d)~6. uncorrelated Fermi liquid stated=(1-6)%/4, so thatd
The first order phase transition between metal and insulamonotonically decreases @sncreases.
tor was pointed out by Peieffs and by Landau and While d is a smooth function o6 for most values ofJ in
Zeldovich?® and examined in more great detail by Mtftin our study, there is a narrow region d>U; whered
their theory, an electron is always bound to a positive chargehanges discontinuously at a very sméllIn Fig. 7, we
due to the long range Coulomb attraction, and the transitioshow the energye vs d for U=10.23%, which is slightly
of a metal to an insulator at zero or very low temperaturesiboveU.=10.23, for four values ofé. At 6=0, there is a
occurs at a finite critical electron density, and must be theglobal energy minimum al=0 and a local minimum around
first type. It is interesting to note that the on-site repulsiond=0.02. As 6 gradually increases, the positions of the two
also leads to the first order transition between a specific typminima change smoothly and their corresponding energies
of metal (superconductorand an insulator studied in the reverse the order. In this region, the optimal value dof
present paper, where the long range Coulomb force is ngumps. This region is found very narrow: 10t23U
included. We also note that Florencio and CHaiovesti- < 10.23%, however.
gated the metal-insulator transition of the Hubbard model We now discuss the SC order parameter. The SC order
using Gutzwiller's wave function by including antiferromag- parameter of the stateVso is defined by, for thed-wave
netism and found the transition to be first type. pairing,
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FIG. 7. E as a function off for U=10.235= U, at J/t=1/3 for 0 5 10 15 2&/{’ 5 10 15 20
several values 0#.

FIG. 9. A and A as functions ofU for several values ob at
A7) :<Cilci+ﬁ>_<ciTCi+ri>’ (29 J/t=1/3. A4 changes _suddenly at. in the half-filled case,_but
changes smoothly dd is reduced from the RVB SC state with
and A=A (x)=—A.{y). We shall adopt the Gutzwiller ap- >U, to the Gossamgr SC state .WiUh< U.. Note that at small
proximation to calculate this quantity. In analogy to the deri_values ofU, the effective Hamiltonian we study here does not rep-

. . . . resent the original Hubbard model, and nonzaggat U=0 is due
vation for the hopping energy in E¢6), we find that to theJ term in the present model.

(GisGiert) = GG Civri)o- (30 A in both the Gossamer and RVB SC states are character-

ized by the variational parametarand a small renormalized
factor g;. They have the same pairing symmetry. It is plau-
sible that the two states are smoothly connected. To examine
this issue further, we plahg. as a function olJ for several
Asc=0A. (31) values of § in Fig. 9. As we can see, at half-filling\g.
changes suddenly to zero ldt, representating a first order
In Fig. 8, we show our results faks. andA as functions of  phase transition from a Gossamer superconductor to a Mott
o for three values ob: well aboveU,, atU,, and well below insulator. However, aé# 0, A, changes continuously across
U.. Note that atU=15>U,, A is a maximum but\;;=0 at  the critical value ofU=U,=10.23.%2 This is to say, a RVB
0=0. A;=0 is consistent with the Mott insulating ground SC state at a fillings>0 is smoothly connected to its corre-
state. AsS increases, the kinetic energy plays a more impor-sponding Gossamer SC state at the sanaand the state with
tant role,A decreases monotonically. Howevég, shows a  U>U, (the RVB SG and the state with) <U, (Gossamer
nonmonotonic dome shape for lardér Also note that al. ~ SC) are essentially the same at least from the superconduc-
the Mott insulator and Gossamer SC state are degenerate tifity point of view. Note that the Gossamer SC state at half-
6=0, and the Gossamer SC phase is continuously evolvefilling and away from the half-filled are smoothly connected,
into the metallic phase at>0. Shown in the figure folJ and that the Gossamer SC state is adiabatically connected to
=10.23~ U, is the metallic phase. The nonzero valuedgf  the BCS staté® Therefore, our theory suggests that the RVB
atU=U.; and =0 indicates the transition to be first order. SC state is smoothly connected to the Gossamer SC state,
It is interesting to point out that the SC order parametethence to the BCS state. This point of view was implied in
Ref. 24, and in Ref. 25. The smooth connection between the

Therefore, the order parametac. is related to the varia-
tional parameten in the gap equations by

02 A e RVB_ SC state and the BCS state via 'Golssamer SC state

04 x implies that the RVB state has its genesis in the BCS state,
Ay and is in some ways rather conventional. What is unusual is

08 the reduction of the superfluid density and the quasiparticle

02 A U=10.23 spectral weigh®.In Fig. 10, we present a schematical ground

0.1 ﬁ,\ state phase diagram including the Mott insulator, Gossamer

0d and RVB SC states in the parameter space of Coulomb re-

03 A Uit=15 pulsionU and the hole concentratiof

or | Ay While the Gossamer and RVB SC states are essentially

0 the same, the chemical potentjalin the Gossamer SC state

0 005 o0t 5 0.15 02 025 is continuous ab=0 because of the metallic phase, while

is discontinuous ab=0 because the state &+0 is an insu-
FIG. 8. Variational parameteX and SC order parametdr,,as lator and the state at any small but finifés a metal within
functions of § for three values ofJ at J/t=1/3. the present theory.
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FIG. 10. Schematical phase diagram for the Hamiltonian in pa-

0
rameter spack) and é. The line of =0 andU > U, corresponds to 8 9 10 11 12 13 14 15

the Mott insulating phase. The RVB SC phase is in the region un
>U; and 6>0, and the Gossamer SC phase is in the region FIG. 12. The discontinuous in chemical potential as a function
< U with either 6=0 or §>0. of U.
- = _ [2. A2
Below we shall studyu quantitatively. At6=0, u=U/2 Ep = (30s/4)Vx; + Ap. (33

by electron-hole symmetry. At other values&fwe calculate

w using Eq.(23) after solving the gap equations. In Fig. 11, et _
we showy as a function of5. As we can see from the figure, 6t the wave vectom satisfying x,=0 [Eq. (17, we have

w=U/2 at8=0, and is continuous fdd <U.=10.23. There E,=Alcosk,—cosk,|. Therefore, the quasiparticle energy is
is a discontinuity ing for U>U, at 8=0. At U>U,, the proportional to the parameteY, which is not renormalized
chemical potential is shifted frotd/2 at the half-filled to the ~ PY the factorg,, in sharp contrast to the SC order parameter
lower Hubbard band away from the half-filled. To see thisWhich is renormalized down by a factor gf Our result here

more explicitly, we definel u=u(d— 0)— u(d=0). Ax as a is consistent with Refs. 7 and 23. Singg is not renormal-
function of U is plotted in Fig. 12. AsU decreasesAu ized, we can see from Fig. 8 that the quasiparticle energy is
t maximum at5=0, and decreases as doping concentration

decreases monotonically and reaches a finite valu&) at . : . . -
=U,+0", then drops to zero d1=U_-0*. The discontinuity increases. This feature was first found for temodel, and
C ) C . . . . Wl ” .
of Au at U, is related to the first order phase transition. 'S consistent with the *high energy pseudogap” observed in
¢ the angular resolved photoemission experiments and the ob-

Finally, we briefly discuss the excited states. In the con 4SC a5 1 " hat this f
text of the Gutzwiller trial wave function, the excited statesS€™V€ energy géﬁ. ere we show that this feature
should also appear in the Gossamer superconductor.

were discussed by Zhareg al’ for the RVB state, and re-
cently by Laughlin for a Gossamer SC Hamiltonf&rHere
we follow Ref. 7 to discuss quasiparticle states in the Gos-

samer superconductor. We consider quasiparticle state, VI SUMMARY

We have used the Gutzwiller variational method to study
an effective Hamiltonian for the Hubbard model in a square
W) = HachH (U + vkcchikl)|O). (32) Ilattice. Based on the Gutzwiller approximation, we have dis-
k#p cussed the ground state both at half-filling and away from the
half-filled. At the half-filling, there is a first order phase tran-
5 sition to separate a Mott insulator at large Coulomb repulsion
The quasiparticle enerdy, is defined to be the difference of U from a Gossamer superconductor at srhallThis is very
the expectation values &f [see Eq(11) ]in this state and in interesting. It suggests that the on-site Coulomb repulsion
the ground statéWso. We use the Gutzwiller method to can lead to a first order transition between a specific type of
calculate the energy and obtain metal and an insulator. The double occupation nunther
which is proportional to the carrier density, changes discon-
tinuously from zero in the Mott insulator phase to a finite

8 value in the metallic phase at the phase transition pcint
— UR=80 =U.). We expect that this type of first order transition should
6 —— Uf=10.23 be observable in the electric transport or in the ac conductiv-

ity measurements. Away from the half-filled, the Gutzwiller
variational state is always metallic. The Gossamer SC state
changes continuously, while the Mott insulating phase be-
comes RVB SC. The Gossamer superconductor is similar to
the RVB SC state with the same type of pairing symmetry
0 and similar type of pseudogap. They are smoothly connected.

0 005 of 80'15 02 025 Their major difference is on the position of the chemical
potentials. The Gutzwiller method we used in this paper has
FIG. 11. The chemical potential as a function of5 for three ~ previously been tested in good agreement with the varia-

values ofU atJ/t=1/3. tional Monte Carlo metho#® We believe that the qualitative
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