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We use an effective Hamiltonian for two-dimensional Hubbard model including an antiferromagnetic spin-
spin coupling term to study recently proposed Gossamer superconductivity. We apply a renormalized mean
field theory to approximately take into account the strong correlation effect in partially projected Gutzwiller
wave functions. At the half-filling, there is a first order phase transition to separate a Mott insulator at large
Coulomb repulsionU from a Gossamer superconductor at smallU. At the critical valueU=Uc, the charge
carrier density and the superconductingsSCd order parameter change discontinuously from zero in the Mott
insulating phase to finite values in the Gossamer SC phase. The first order transition is due to the interplay of
the kinetic and spin exchange energies. As the electron density changes away from half-filling, the Gossamer
SC state changes smoothly, while the Mott insulator is evolved into a resonating valence bondsRVBd SC state.
The Gossamer and RVB SC states have the same pairing symmetry. The SC order parameter changes smoothly
from a RVB SC state atU.Uc to a Gossamer SC state atU,Uc at a fixed nonhalf-filled electron density. We
argue that the RVB SC state is smoothly connected to the Gossamer SC state, hence to the BCS state.

DOI: 10.1103/PhysRevB.71.014508 PACS numberssd: 75.10.Jm, 05.30.Pr

I. INTRODUCTION

Since the discovery of high temperature superconductivity
in the cuprates,1,2 there have been a lot of theoretical efforts
to understand its microscopic mechanism. One of the sce-
narios was initiated by Anderson,3 who proposed the idea of
a resonating valence bondsRVBd state for the observed un-
usual properties in these compounds. A minimum model for
cuprates was proposed to be two-dimensional Hubbard or its
equivalentt-J model in the largeU limit.3,4 In the RVB pic-
ture, each lattice site is either unoccupied or singly occupied
by a spin-up or spin-down electron. The spins are coupled
antiferromagnetically without long range order. The charge
carriers move in the spin background and condense to a su-
perconductingsSCd state.5–12 In this scenario, the undoped
cuprate with density of one electron per site is a Mott insu-
lator, and the superconductor is viewed as a doped Mott in-
sulator. Many experimentally observed properties in cu-
prates, such as thed-wave symmetry in super-
conductivity,13,14 the pseudogap phenomena,15 and the linear
doping dependence of the superfluid density in the under-
doped region,16 seem to be consistent with the RVB mean
field theory, as discussed in a recent review.5 On the other
hand, while mean field theories and variational calculations
support the SC ground state in the doped Hubbard ort-J
models, more direct numerical calculations on these models
remain controversial and have been unable to provide unam-
biguous answers to this question.17–22

Very recently, Laughlin has proposed an interesting no-
tion, the Gossamer superconductivity, for highTc SC
Cu-oxides.23 In a Gossamer superconductor, the superfluid
density is tenuous, in contrast to the conventional supercon-
ductor. He proposed a partially Gutzwiller projected BCS
wave functionfEq. s2d belowg to describe the Gossamer SC
state, and a Hamiltonian for which his wave function is an
exact ground state. By expanding that Hamiltonian, Laughlin

showed that the SC ground state requires a large attractive
interaction in addition to a large on-site Coulomb repulsion.

In a previous short paper,24 one of ussF.C.Z.d argued that
the effective Hamiltonian of the Hubbard model acting on
the Gutzwiller’s wave function should include a spin-spin
coupling term, and that the on-site Coulomb repulsion gen-
erates an attractive pairing interaction in addition to the sup-
pression of electron’s onsite double occupation. Using
Gutzwiller variational method, it was demonstrated that the
ground state at half-filled electron density is a Gossamer su-
perconductor for smaller intrasite Coulomb repulsionU and
a Mott insulator for largerU. The Gossamer SC state is
similar to the RVB SC state. The transition between a Mott
insulator and a superconductor at half-filled electron density
has also been studied by Baskaran,25 who introduced a two-
speciest-J model and argued its superconductivity to be
similar to the RVB. More recently, Berneviget al.26 have
examined the instability of the Gossamer superconductivity
towards a magnetic insulator within the framework of
Laughlin’s Gossamer Hamiltonian.23

In this paper, we extend the idea explored in Ref. 24 to
study the phase transition in strongly correlated electron sys-
tems in great detail. In particular, we use an effective Hub-
bard like HamiltonianfEq. s1d belowg in a square lattice to
systematically study the partially projected Gutzwiller wave
function and the competition between the Mott insulator and
the superconductor. We use Gutzwiller’s approximation to
replace the strong correlation in the projected state by a set
of renormalized factors, and to carry out a renormalized
mean field theory numerically to study the ground state and
the elementary excited states of the system. Our main results
can be summarized below. At the half-filling, the ground
state is a Mott insulator at largeU, and a Gossamer super-
conductor at smallU. The transition is the first type in the
physically interesting parameter region. The charge carrier
density and the SC order parameter change discontinuously
from zero in the Mott insulating phase to finite values in the
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SC state at the critical value ofU. As the electron density
changes away from half-filling, the Gossamer SC state
changes smoothly, while the Mott insulating phase is evolved
to the RVB SC state. The Gossamer and RVB SC states have
the same pairing symmetry, and their SC order parameters
are both suppressed by a unified renormalized factor, which
quantitatively characterizes the smallness of the superfluid
density. The SC order parameters in both RVB and Gossamer
SC states are calculated and are found to change smoothly
between the two states asU is varied at a fixed non-half-
filled electron density. We thus argue that the RVB SC state
is smoothly connected to the Gossamer SC state.25 Since a
Gossamer SC state is adiabatically connected to a BCS
state,23 our theory suggests that the RVB SC state is
smoothly connected to the BCS state. The Gossamer SC state
at half-filling may be viewed as a RVB state with equal num-
ber of independent empty and doubly occupied sites.27 From
this point of view, the reduction ofU / t, which may be real-
ized by applying the pressure,25 plays a similar role as the
chemical doping. The Gossamer superconductivity may have
already been realized in organic superconductors.25,28 In the
present paper, we focus on the SC and insulating properties
of the problem, and neglect the possible antiferromagnetism
in the model.

This paper is organized as follows: In Sec. II, we intro-
duce the model and the variational wave function. In Sec. III,
we formulate a renormalized mean field theory to study the
variational wave function. Section IV is devoted to the phase
transition between the Mott insulator and the Gossamer su-
perconductor at the half-filling. Detailed discussions on the
Gossamer and RVB SC states are given in Sec. V. The paper
is concluded with a summary in Sec. VI.

II. THE MODEL AND THE VARIATIONAL WAVE
FUNCTION

We study an effective Hubbard Hamiltonian in a square
lattice,

H = Ht + Hs + HU,

Ht = − o
ki j ls

stijcis
† cjs + h . c .d,

Hs = Jo
ki j l

Si ·Sj ,

HU = Uo
i

ni↑ni↓. s1d

In the above equations,cis is the annihilation operator of an
electron of spins at the lattice sitei, and nis=cis

† cis. The
sum is over the nearest neighbor pairs ofki j l, andU.0 is
the intrasite Coulomb repulsion. We assumet.0. The case
at t,0 can be mapped onto the model witht.0. In this
Hamiltonian, we have introduced an antiferromagnetic spin-
spin coupling term to account for the effect of the virtual
electron hopping process. In the largeU limit, J<4t2/U.
This model may be viewed as an effective Hamiltonian of

the Hubbard model. The inclusion of the antiferromagnetic
spin coupling appears consistent with the weak coupling
renormalization group analysis,29 and is appropriate in the
variational approach studied here. In the limitU→`, the
model is reduced to thet-J model. While there is a lack of
derivation of the Hamiltonians1d from the Hubbard model,
we believe Eq.s1d to be relevant to the physics of the Hub-
bard model at largeU including values near the transition
points we are most interested in. Equations1d may be very
different from the Hubbard model at smallU, however.
Keeping this in mind, below we shall consider Eq.s1d from
a phenomenological point of view, and considerJ to be an
independent parameter, and study its solutions within the
framework of Gutzwiller’s variational approach.

Due to the perfect nesting and the van Hove singularity in
the density of state, the ground state of Hamiltonians1d at
half-filling selectron densityn=1 per sited is an antiferro-
magnet for arbitrarily small value ofU in the absence of the
spin-spin coupling termsJ=0d. In this paper, however, we
will not consider the magnetic long range order.

We study the model using a variational trial wave function
proposed by Laughlin,23

uCGSl = PauCBCSl, s2d

Pa = p
i

s1 − ani↑ni↓d, s3d

with uCBCSl a BCS SC state, given by

uCBCSl = p
k

suk + vkck↑
† c−k↓

† du0l, s4d

where u0l is the vacuum, anduk and vk are variational pa-
rameters, satisfying the condition

uuku2 + uvku2 = 1.

Pa is a projection operator to partially project out the doubly
occupied electron states on each lattice sitei. The stateuCGSl
may be considered as a generalization of the previously stud-
ied partially projected noninteracting electron state30–32 to
include superconductivity. In the limiting caseukvk=0,
uCBCSl is reduced to the noninteracting electron state, and

uCGSl → PauCFLl,

whereuCFLl is the ground state of the noninteracting electron
system, given byuCFLl= p

k,s

cks
† cksu0l, and the product runs

over all thek’s inside the Fermi surface.uCGSl is a natural
generalization of conventional BCS state to strongly corre-
lated systems. It connects the BCS state to the RVB state,
and is characterized by the parametera between 0 and 1.
a=0 corresponds to a conventional BCS state. Ata=1, the
projection operator projects out all the doubly occupied elec-
tron states, anduCGSl is reduced to the RVB state.3 At the
half-filling and at a=1, each lattice site is occupied by a
single electron, and the system is a Mott insulator. Therefore,
the wave function uCGSl is suitable for studying
superconductor-insulator transition.
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III. THE RENORMALIZED MEAN FIELD THEORY

We now proceed with the variational calculations to de-
termine the parametersa and uk, vk. We consider the elec-
tron densitynø1. The variational energy per siteE=kHl is
given by

E = Ud + kHtl + kHJl. s5d

The first term in Eq.s5d is the intrasite Coulomb interaction
energy, while the second and the third terms are the average
kinetic and spin-spin correlation energies, respectively.d
=kni↑ni↓l is the average electron double occupation number,
and is a function ofa, and 0ødø1/4. We have denotedkQl
as the expectation value of the operatorQ in the stateuCGSl.
For briefness,kHtl ,kHJl stand for their average values per
site.

The variational calculations can be carried out using
variational Monte Carlo method.8,33–35 Here we use the
renormalized Hamiltonian approach to treat the projection
operator approximately.7 In this approach, the effect of the
projection operator is taken into account by a set of classical
statistical weighting factors, which multiplies the quantum
coherent results of the nonprojected state. This method
sGutzwiller method hereafterd was proposed by Gutzwiller,31

and has been applied to study strongly correlated systems by
many authors.7,30,32Let kQl0 be the expectation value ofQ in
the stateuCBCSl, then the hopping energy and the spin-spin
correlation in the stateuCGSl are related to those in the state
uCBCSl by

kcis
† cjsl = gtkcis

† cjsl0,

kSi ·Sjl = gskSi ·Sjl0. s6d

The renormalized factorsgt and gs are determined by the
ratio of the probability of the physical processes in the states
uCGSl and uCBCSl. Following the counting method described
in the literature,7 we have

gt =
sn − 2ddsÎd + Î1 − n + dd2

s1 − n/2dn
,

gs =
sn − 2dd2

s1 − n/2d2n2 . s7d

The expression forgt is the same as in the early literature.30

In the limit d=0, Eqs.s7d recover the results derived for the
t-J model.7 These renormalized factors quantitatively de-
scribe the correlation effect of the on-site repulsion.gtø1,
andgt!1 at smalld and smalld, indicating the reduction of
the kinetic energy due to the projection. 4ùgsù1, andgs
=4 atd=0 andd=0, indicating the enhancement of the spin-
spin correlation due to the projection. In Fig. 1, we plotgt
and gs as functions of the double occupation numberd for
various electron densities.

In terms of these renormalization factors, we define a
renormalized Hamiltonian,

H8 = gtHt + gsHs + HU. s8d

The expectation value ofH in the stateuCGSl can thus be
evaluated in terms of the expectation value ofH8 in the state
uCBCSl. We obtain,

E = kH8l0 = Ud + gtkHtl0 + gskHJl0. s9d

In the renormalized Hamiltonian approach, the original
variational parametersha ,vk ,ukj are transformed into the
variational parametershd,vk ,ukj. There is one-to-one corre-
spondence betweena andd. Within the Gutzwiller approxi-
mation, one can analytically calculated=kni↑ni↓l, and one
finds,31,32

s1 − ad2 =
ds1 − n + dd
sn/2 − dd2 . s10d

This relation is useful to make connections between the
Gutzwiller method we adopt here where the partial projec-
tion is described byd and Laughlin’s method where the par-
tial projection is characterized bya.

The formalism below is similar to the renormalized mean
field theory developed for thet-J model7 except thatd may
be nonzero in the present theory. We introduce a Lagrangian
multiplier m̃, and define

K = H8 − m̃So
is

nis − NeD , s11d

with Ne the number of electrons. We then haveE=kKl0, sub-
ject to the condition]kKl0/]m̃=0, or

2o
k

vk
2 = n. s12d

Below we consider the caseuk andvk to be real. Evaluating
Eq. s11d , we obtainslattice constant51d,

FIG. 1. Gutzwiller’s renormalization factorsgt and gs as
functions of double occupation numberd obtained from Eqs.s7d.
d=1−n.

THEORY OF GOSSAMER AND RESONATING VALENCE… PHYSICAL REVIEW B 71, 014508s2005d

014508-3



E = Ud + m̃ + 2o
k

sgtek − m̃dvk
2

+ o
k,k8

Vk−k8svk
2vk8

2 + ukvkuk8vk8d, s13d

where

Vk = − 3
2gsJscoskx + coskyd,

ek = − 2tscoskx + coskyd. s14d

Carrying out the variational procedure with respect touk and
vk, we obtain

uk
2 = 1

2s1 + xk/Ekd,

vk
2 = 1

2s1 − xk/Ekd, s15d

where

Ek = Îxk
2 + Dk

2. s16d

The variational parametersDk and xk are related to the
particle-particle pairing amplitudeDk and the particle-hole
amplitudesxk by

Dk = Dx coskx + Dy cosky,

xk = ẽk − sxx coskx + xy coskyd. s17d

In the above equations, we have introduced two correlation
functions in the unprojected stateuCBCSl,

Dt = kci↓ci+t,↑ − ci↑ci+t,↓l0,

xt = o
s

kcis
† ci+tsl0, s18d

with t=x,y, the unit vectors on the lattice, and

ẽk = f− 2gttscoskx + coskyd − m̃g/s3gsJ/4d. s19d

For thed-wave pairing state, which is expected to have the
lowest energy within this class of states as suggested in the
previous studies for thet-J model,7,9,10,36,37we haveDx=
−Dy=D, and xx=xy=x. D and x are determined by the
coupled gap equations,

D = o
k

scoskxdDk/Ek,

x = − o
k

scoskxdxk/Ek. s20d

These gap equations must be solved simultaneously with the
hole concentration equation, Eq.s12d , which can be rewrit-
ten asd=o

k

xk /Ek, with d=1−n. The variation with respect to

d leads to the equation

] E

] d
= U +

] gt

] d
kHtl0 +

] gs

] d
kHJl0 = 0. s21d

In terms ofx andD, the energy is given by

E = Ud − 4ngttx − s3gsJ/4dsD2 + x2d, s22d

wherex and D are the solutions of the gap equations, and
both are functions ofd. In case Eq.s21d has multiple solu-
tions for d, the ground state is determined by the global
energy minimum. Alternatively, we may solve the gap equa-
tions for given values ofd, and calculateEsdd to find the
optimal value ofd to determine the ground state and the
ground state energy. The chemical potential of the system,
m=]E/]n, is given by

m = m̃ +
] gt

] n
kHtl0 +

] gs

] n
kHJl0. s23d

Note that chemical potential here is different from the La-
grangian multiplierm̃ in the renormalized mean field theory,
because the renormalized factorsgt, gs are also functions of
electron densityn.

IV. MOTT INSULATOR-GOSSAMER
SUPERCONDUCTOR TRANSITION

In this section, we discuss the variational solutions at the
half filled case. At the half-filling, the trial wave function
uCGSl describes either a Mott insulator ifa=1 si.e., d=0d, or
a SC state ifa,1 si.e., d.0d. If a is close to 1, ord is very
close to zero,uCGSl describes a Gossamer SC state.

We expect a Mott insulator at largeU and a SC state at
smallU. This can be examined qualitatively without carrying
out the quantitative calculations. At the half-filling,gt
=8s1–2ddd, andgs=4s1–2dd2. Equations21d becomes

U + 8s1 – 4ddkHtl0 − 16s1 – 2ddkHJl0 = 0. s24d

Since bothkHtl0 andkHJl0 are finite, there will be no solution
of Eq. s24d if U is sufficiently large. This indicates that the
ground state corresponds to eitherd=0 or d=dmax, the al-
lowed maximum value ofd. The repulsive nature ofU ex-
cludes the latter, and it follows that the Mott insulating state
with d=0 is the ground state. We believe that the qualitative
result for the existence of the Mott insulating phase at large
but finite U is robust. Note that in the Gutzwiller’s wave
function, the doubly occupied site and the empty site are not
correlated. At the half-filling,d represents the carrier density
n* and is proportional to the Drude weight in the a.c. con-
ductivity, n*e2/m* , with m* the effective mass. We remark
that the parameterd in our Gutzwiller approach is different

from the usual double occupation numberd̃ sfor example, the
double occupation calculated in the exact diagonalization of

a finite size systemd. In the latter case,d̃ also includes the
contribution from the virtual hopping process, hence the
double occupied site can be bound to the empty site and the

double occupation numberd̃ does not represent the mobile
carriers.

In the insulating phased=0, so the Hamiltonian is re-
duced to a Heisenberg model. Within our mean field theory,
the RVB ground state energy is given by

E0 = − 3JsD0
2 + x0

2d s25d

with
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D0 = x0 = C/Î2 =
1
Î8

o
k

Îcos2 kx + cos2 ky = 0.339.

s26d

At small U, one expects a metallic ground state, except in the
special cases due to the band effect such as the von Hove
singularity and perfect nesting inHt. In this paper, we will
not consider the special band effect. We expect a metal-
insulator transition at a finiteU=Uc in the general case, with
the metallic phase to be SC provided thatukvkÞ0. This is
the Mott insulator-Gossamer superconductor transition.

We now discuss the phase transition in detail. We solve
the gap equations for the fixedd and determine the transition
point Uc and the nature of the transition. The phase diagram
in the parameter spaceU and J/ t is plotted in Fig. 2. The
critical Uc separates the Mott insulating phase from the Gos-
samer SC phase. We may choose the mobile carrier density
as the order parameter, which is proportional tod. The phase
transition is classified as second type ifd→0 and first type if
d→dc.0 asU→Uc from the metallic side. This classifica-
tion is consistent with the usual zero temperature quantum
phase transition, where the nature of the phase transition de-
pends on the continuity or discontinuity of the order param-
eter. We find the transition to be first order at 0,J/ t,hc,
and second order athc,J/ t, with hc<2. At J=0, the
present theory is reduced to the Brinkman-Rice theory for
metal-insulator transition30 for the projected noninteracting
electron state. In that case, we findUc/ t=128/p2. From Fig.
2, we see thatUcsJ→0d=UcsJ=0d, so that the critical value
of U is continuous atJ=0. However, the transition is second

order in the caseJ=0, while it is first order for any small but
finite J/ t.

Let us first discuss the first order phase transition in the
region 0,J/ t,2. In Fig. 3, we show the energyE as a
function of d at a typical parameterJ/ t=1/3. Note thatE is
not a monotonic function ofd around the critical pointUc.
There is a local energy minimum aroundd=0.02, which de-
velops to a global minimum asU approachesUc from the
insulator side. The local minimumEsdcd at d=dc represents a
metallic solution, andEsd=0d represents an insulator solu-
tion. The critical value for the Mott insulator and Gossamer
superconductor transition is determined by the condition
Esdcd=Esd=0d. From Fig. 3, we haveUc/ t=10.23 for J/ t
=1/3. At U.Uc, d=0, and the ground state is an insulator.
At U,Uc, dùdc<0.02, and the ground state is a Gossamer
SC state. As we can see from Fig. 4,d is approximately
linear in U except nearUc, where the discontinuity ind is
about 0.02. We conclude that the Mott insulator-Gossamer
superconductor phase transition in this relevant region is first
type. The carrier density is discontinuous at the phase tran-
sition point. Sinced is proportional to the carrier density, this
type of first order transition should be observable in the elec-
tric transport or in the ac conductivity measurements.

For a large ratio ofJ/ t, our calculations show that the
phase transition is second order. This is illustrated in Fig. 5
for E vs d in the case ofJ/ t=3. The transition occurs at
Uc=2.58t, andd changes continuously acrossUc.

A special case isJ=0. In this limit, uCGSl=PauCFLl, and
our theory is reduced to the Brinkman-Rice theory.30 The
energy at the half-filling is given by

FIG. 2. Phase diagram at half-filling: Insulator at the upper part
and superconductor at the lower part.

FIG. 3. The energyE as a function of double occupationd for
three values ofU aroundUc at d=0 andJ/ t=1/3.

FIG. 4. d as a function ofU at d=0 andJ/ t=1/3.

FIG. 5. E as a function ofd for several values ofU aroundUc at
d=0 andJ/ t=3.
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E = Ud − 2gto
k

ucoskx + coskyu = Ud − 128ds1 – 2ddt/p2.

s27d

From this we findUc/ t=128/p2<13. d is continuous atUc
so that the transition is a second type.

Our result on the first order phase transition in the physi-
cally interesting regionssmall but nonzeroJ/ td is somewhat
unexpected. We argue that the first order transition between
the Mott insulator and the Gossamer superconductor is due
to the interplay of the kinetic and spin-spin correlation ener-
gies. This interplay was not included in the previous study of
the Gutzwiller approach but is taken into account here. To
illustrate this point, we consider the limiting case 0,J/ t
!1, and expand the energyE of Eq. s22d at n=1 for smalld,

Esdd = E0 + sU − Uc0dd − bd2 + Osd3d, s28d

where E0 is the energy atd=0 given by Eq. s25d, Uc0
=16Î2Ct−12C2J is the solution of]E/]d=0 at d=0, given
by Eq. s24d. b=f32s]x /]ddud=0

−32Î2Cgt. The J dependence
in b has been neglected sinceJ/ t!1. Note that the kinetic
energy is proportional tox. As d increases from 0,x tends to
increase fromx0=C/Î2 to gain more kinetic energy. There-
fore, ]x /]d.0. In the limit J/ t!1, we have]x /]d=sx
−x0d /d~ t /J@1, hence the first term in the expression forb
dominates andb.0. This demonstrates thatd=0 is a local
maximum in energy atU=Uc0, and the phase transition oc-
curs at a large value ofU corresponding tod.0 as numeri-
cally shown in Fig. 3, hence it is a first order transition.
Numerically, we find thatb=34.8 in the caseJ/ t=1/3.

It is interesting to compare the Gossamer superconductor–
Mott insulator transition with the metal-insulator transition
studied in previous literature.30 In the Brinkman-Rice theory,
the transition is second order. In that theory, as the system
approaches the insulating phase, the effective massm* →`.
In the Gossamer superconductor-Mott insulator transition
with small ratio ofJ/ t, the insulating phase is not character-
ized by the divergence of the effective mass. We estimate the
ratio of the effective mass to the band masss1/ td at the
metallic side of transition point to be 1/gt<1/s8dd<6.

The first order phase transition between metal and insula-
tor was pointed out by Peierls38 and by Landau and
Zeldovich,39 and examined in more great detail by Mott.40 In
their theory, an electron is always bound to a positive charge
due to the long range Coulomb attraction, and the transition
of a metal to an insulator at zero or very low temperatures
occurs at a finite critical electron density, and must be the
first type. It is interesting to note that the on-site repulsion
also leads to the first order transition between a specific type
of metal ssuperconductord and an insulator studied in the
present paper, where the long range Coulomb force is not
included. We also note that Florencio and Chao41 investi-
gated the metal-insulator transition of the Hubbard model
using Gutzwiller’s wave function by including antiferromag-
netism and found the transition to be first type.

V. GOSSAMER AND RVB SUPERCONDUCTIVITY

In this section, we discuss the SC state at bothd=0 and
d.0. Note that atd.0, uCGSl always describes a metallic
state. To make the terminology clear, we shall call the SC
state atU,Uc to be a Gossamer superconductor,23,24and the
doped Mott insulators U.Uc andd.0d to be the RVB SC
state.3

We begin with the discussion of the double occupation
numberd as a function of the hole concentration. We solve
the gap equations and find the optimal value ofd. The results
are plotted in Fig. 6. We find thatd is always nonzero atd
.0, even in the regionU.Uc. This suggests that the doped
Mott insulator is described by a partially projected state
f a,1 in Eq. s2dg. Nevertheless,d is very small for U
@Uc. As we can see from Fig. 6,d varies from 0 to 0.01 for
U / t=15, which corresponds toU /Uc<1.5. The nonzero
value of d at d.0 may be understood from the variational
equations21d, which determinesd. At d.0, ]gt /]dud=0→`.
Therefore,d=0 cannot be a solution of the equation, andd
must be finite. It remains to be seen if this result is due to the
Gutzwiller’s approximation used in our calculation. It will be
interesting to further examine this issue using other methods
such as the variational Monte Carlo method.

From Fig. 6, we also see that asd increases,d increases
for large U but decreases for smallU. The latter may be
understood as follows. In the smallU case, the correlation
becomes less important, and the qualitative feature between
d and d becomes similar to the uncorrelated state. For the
uncorrelated Fermi liquid state,d=s1−dd2/4, so that d
monotonically decreases asd increases.

While d is a smooth function ofd for most values ofU in
our study, there is a narrow region inU.Uc, where d
changes discontinuously at a very smalld. In Fig. 7, we
show the energyE vs d for U=10.235t, which is slightly
aboveUc=10.23t, for four values ofd. At d=0, there is a
global energy minimum atd=0 and a local minimum around
d=0.02. Asd gradually increases, the positions of the two
minima change smoothly and their corresponding energies
reverse the order. In this region, the optimal value ofd
jumps. This region is found very narrow: 10.23t,U
,10.235t, however.

We now discuss the SC order parameter. The SC order
parameter of the stateuCGSl is defined by, for thed-wave
pairing,

FIG. 6. d as a function ofd at J/ t=1/3 for U=8,Uc and U
=15.Uc.
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Dscstd = kci↓ci+t↑l − kci↑ci+t↓l, s29d

andDsc=Dscsxd=−Dscsyd. We shall adopt the Gutzwiller ap-
proximation to calculate this quantity. In analogy to the deri-
vation for the hopping energy in Eq.s6d, we find that7

kci↓ci+t↑l = gtkci↓ci+t↑l0. s30d

Therefore, the order parameterDsc is related to the varia-
tional parameterD in the gap equations by

Dsc= gtD. s31d

In Fig. 8, we show our results forDsc andD as functions of
d for three values ofU: well aboveUc, atUc, and well below
Uc. Note that atU=15t@Uc, D is a maximum butDsc=0 at
d=0. Dsc=0 is consistent with the Mott insulating ground
state. Asd increases, the kinetic energy plays a more impor-
tant role,D decreases monotonically. However,Dsc shows a
nonmonotonic dome shape for largerU. Also note that atUc
the Mott insulator and Gossamer SC state are degenerate at
d=0, and the Gossamer SC phase is continuously evolved
into the metallic phase atd.0. Shown in the figure forU
=10.23t<Uc is the metallic phase. The nonzero value ofDsc
at U=Uc andd=0 indicates the transition to be first order.

It is interesting to point out that the SC order parameter

Dsc in both the Gossamer and RVB SC states are character-
ized by the variational parameterD and a small renormalized
factor gt. They have the same pairing symmetry. It is plau-
sible that the two states are smoothly connected. To examine
this issue further, we plotDsc as a function ofU for several
values of d in Fig. 9. As we can see, at half-filling,Dsc
changes suddenly to zero atUc, representating a first order
phase transition from a Gossamer superconductor to a Mott
insulator. However, atdÞ0, Dsc changes continuously across
the critical value ofU=Uc=10.23t.42 This is to say, a RVB
SC state at a fillingd.0 is smoothly connected to its corre-
sponding Gossamer SC state at the samed, and the state with
U.Uc sthe RVB SCd and the state withU,Uc sGossamer
SCd are essentially the same at least from the superconduc-
tivity point of view. Note that the Gossamer SC state at half-
filling and away from the half-filled are smoothly connected,
and that the Gossamer SC state is adiabatically connected to
the BCS state.23 Therefore, our theory suggests that the RVB
SC state is smoothly connected to the Gossamer SC state,
hence to the BCS state. This point of view was implied in
Ref. 24, and in Ref. 25. The smooth connection between the
RVB SC state and the BCS state via Gossamer SC state
implies that the RVB state has its genesis in the BCS state,
and is in some ways rather conventional. What is unusual is
the reduction of the superfluid density and the quasiparticle
spectral weight.5 In Fig. 10, we present a schematical ground
state phase diagram including the Mott insulator, Gossamer
and RVB SC states in the parameter space of Coulomb re-
pulsionU and the hole concentrationd.

While the Gossamer and RVB SC states are essentially
the same, the chemical potentialm in the Gossamer SC state
is continuous atd=0 because of the metallic phase, whilem
is discontinuous atd=0 because the state atd=0 is an insu-
lator and the state at any small but finited is a metal within
the present theory.

FIG. 7. E as a function ofd for U=10.235t*Uc at J/ t=1/3 for
several values ofd.

FIG. 8. Variational parameterD and SC order parameterDsc as
functions ofd for three values ofU at J/ t=1/3.

FIG. 9. Dsc and D as functions ofU for several values ofd at
J/ t=1/3. Dsc changes suddenly atUc in the half-filled case, but
changes smoothly asU is reduced from the RVB SC state withU
.Uc to the Gossamer SC state withU,Uc. Note that at small
values ofU, the effective Hamiltonian we study here does not rep-
resent the original Hubbard model, and nonzeroDsc at U=0 is due
to theJ term in the present model.
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Below we shall studym quantitatively. Atd=0, m=U /2
by electron-hole symmetry. At other values ofd, we calculate
m using Eq.s23d after solving the gap equations. In Fig. 11,
we showm as a function ofd. As we can see from the figure,
m=U /2 atd=0, and is continuous forUøUc=10.23t. There
is a discontinuity inm for U.Uc at d=0. At U.Uc, the
chemical potential is shifted fromU /2 at the half-filled to the
lower Hubbard band away from the half-filled. To see this
more explicitly, we defineDm=msd→0d−msd=0d. Dm as a
function of U is plotted in Fig. 12. AsU decreases,Dm
decreases monotonically and reaches a finite value atU
=Uc+0+, then drops to zero atU=Uc−0+. The discontinuity
of Dm at Uc is related to the first order phase transition.

Finally, we briefly discuss the excited states. In the con-
text of the Gutzwiller trial wave function, the excited states
were discussed by Zhanget al.7 for the RVB state, and re-
cently by Laughlin for a Gossamer SC Hamiltonian.23 Here
we follow Ref. 7 to discuss quasiparticle states in the Gos-
samer superconductor. We consider quasiparticle state,

uCp↑l = Pacp↑
† p

kÞp
suk + vkck↑

† c−k↓
† du0l. s32d

The quasiparticle energyẼp is defined to be the difference of
the expectation values ofK fsee Eq.s11d g in this state and in
the ground stateuCGSl. We use the Gutzwiller method to
calculate the energy and obtain7

Ẽp = s3gsJ/4dÎxp
2 + Dp

2. s33d

At the wave vectorp satisfying xp=0 fEq. s17dg, we have

Ẽp=Ducoskx−coskyu. Therefore, the quasiparticle energy is
proportional to the parameterD, which is not renormalized
by the factorgt, in sharp contrast to the SC order parameter
which is renormalized down by a factor ofgt. Our result here
is consistent with Refs. 7 and 23. SinceEp is not renormal-
ized, we can see from Fig. 8 that the quasiparticle energy is
maximum atd=0, and decreases as doping concentration
increases. This feature was first found for thet- j model,7 and
is consistent with the “high energy pseudogap” observed in
the angular resolved photoemission experiments and the ob-
served SC energy gap.43–45 Here we show that this feature
should also appear in the Gossamer superconductor.

VI. SUMMARY

We have used the Gutzwiller variational method to study
an effective Hamiltonian for the Hubbard model in a square
lattice. Based on the Gutzwiller approximation, we have dis-
cussed the ground state both at half-filling and away from the
half-filled. At the half-filling, there is a first order phase tran-
sition to separate a Mott insulator at large Coulomb repulsion
U from a Gossamer superconductor at smallU. This is very
interesting. It suggests that the on-site Coulomb repulsion
can lead to a first order transition between a specific type of
metal and an insulator. The double occupation numberd,
which is proportional to the carrier density, changes discon-
tinuously from zero in the Mott insulator phase to a finite
value in the metallic phase at the phase transition pointsU
=Ucd. We expect that this type of first order transition should
be observable in the electric transport or in the ac conductiv-
ity measurements. Away from the half-filled, the Gutzwiller
variational state is always metallic. The Gossamer SC state
changes continuously, while the Mott insulating phase be-
comes RVB SC. The Gossamer superconductor is similar to
the RVB SC state with the same type of pairing symmetry
and similar type of pseudogap. They are smoothly connected.
Their major difference is on the position of the chemical
potentials. The Gutzwiller method we used in this paper has
previously been tested in good agreement with the varia-
tional Monte Carlo method.7,8 We believe that the qualitative

FIG. 10. Schematical phase diagram for the Hamiltonian in pa-
rameter spaceU andd. The line ofd=0 andU.Uc corresponds to
the Mott insulating phase. The RVB SC phase is in the regionU
.Uc and d.0, and the Gossamer SC phase is in the regionU
,Uc with eitherd=0 or d.0.

FIG. 11. The chemical potentialm as a function ofd for three
values ofU at J/ t=1/3.

FIG. 12. The discontinuous in chemical potential as a function
of U.
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conclusions obtained here should be reliable, and refined nu-
merical calculations such as variational Monte Carlo calcu-
lations will be interesting for further examination of the
problem. There are other questions that require further inves-
tigation, such as the competition with the antiferromagnetic
phase, which will be for our future study.
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