5,245 research outputs found
A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers
We develop a simple model for the slow lights in Vertical Cavity Surface
Emission Lasers (VCSELs), with the combination of cavity and population
pulsation effects. The dependences of probe signal power, injection bias
current and wavelength detuning for the group delays are demonstrated
numerically and experimentally. Up to 65 ps group delays and up to 10 GHz
modulation frequency can be achieved in the room temperature at the wavelength
of 1.3 m. The most significant feature of our VCSEL device is that the
length of active region is only several m long. Based on the experimental
parameters of quantum dot VCSEL structures, we show that the resonance effect
of laser cavity plays a significant role to enhance the group delays
Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity
Abstract
There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700mV
recorded in this experiment as an indicator of the bisulfide (HS−) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS− concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials
Spin-Phonon Coupling in Iron Pnictide Superconductors
The magnetic moment in the parent phase of the iron-pnictide superconductors
varies with composition even when the nominal charge of iron is unchanged. We
propose the spin-lattice coupling due to the magneto-volume effect as the
primary origin of this effect, and formulate a Landau theory to describe the
dependence of the moment to the Fe-As layer separation. We then compare the
superconductive critical temperature of doped iron pnictides to the local
moment predicted by the theory, and suggest that the spin-phonon coupling may
play a role in the superconductivity of this compound
POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders
AbstractPurposeTo review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures.MethodsFour patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing.ResultsFour patients of multiple different ethnicities, age 3–18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers–Huttenlocher syndrome.ConclusionOur cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers–Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression
Induction of p38- and gc1qr-Dependent IL-8 Expression in Pulmonary Fibroblasts by Soluble Hepatitis c Core Protein
Background: Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation. Methods: NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition. Results: Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling. Conclusions: These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a proinflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV
Experimental elucidation of the origin of the `double spin resonances' in Ba(FeCo)As
We report a combined study of the spin resonances and superconducting gaps
for underdoped ( K), optimally doped ( K), and overdoped
( K) Ba(FeCo)As single crystals with inelastic
neutron scattering and angle resolved photoemission spectroscopy. We find a
quasi two dimensional spin resonance whose energy scales with the
superconducting gap in all three compounds. In addition, anisotropic low energy
spin excitation enhancements in the superconducting state have been deduced and
characterized for the under and optimally doped compounds. Our data suggest
that the quasi two dimensional spin resonance is a spin exciton that
corresponds to the spin singlet-triplet excitations of the itinerant electrons.
However, the intensity enhancements of the anisotropic spin excitations are
dominated by the out-of-plane spin excitations of the ordered moments due to
the suppression of damping in the superconducting state. Hence we offer a new
interpretation of the double energy scales differing from previous
interpretations based on anisotropic superconducting energy gaps, and
systematically explain the doping-dependent trend across the phase diagram.Comment: 8 pages, 7 figures, 1 table. Accepted for publication on Physical
Review
Spin dynamics near a putative antiferromagnetic quantum critical point in Cu substituted BaFeAs and its relation to high-temperature superconductivity
We present the results of elastic and inelastic neutron scattering
measurements on non-superconducting
Ba(FeCu)As, a composition close to a
quantum critical point between AFM ordered and paramagnetic phases. By
comparing these results with the spin fluctuations in the low Cu composition as
well as the parent compound BaFeAs and superconducting
Ba(FeNi)As compounds, we demonstrate that paramagnon-like
spin fluctuations are evident in the antiferromagnetically ordered state of
Ba(FeCu)As, which is distinct from the AFM-like
spin fluctuations in the superconducting compounds. Our observations suggest
that Cu substitution decouples the interaction between quasiparticles and the
spin fluctuations. We also show that the spin-spin correlation length,
, increases rapidly as the temperature is lowered and find
scaling behavior, the hallmark of quantum criticality, at an
antiferromagnetic quantum critical point.Comment: 10 pages, 7 figure
Competitive Fixed-Bed Adsorption of Pb(II), Cu(II), and Ni(II) from Aqueous Solution Using Chitosan-Coated Bentonite
Fixed-bed adsorption studies using chitosan-coated bentonite (CCB) as adsorbent media were investigated for the simultaneous adsorption of Pb(II), Cu(II), and Ni(II) from a multimetal system. The effects of operational parameters such as bed height, flow rate, and initial concentration on the length of mass transfer zone, breakthrough time, exhaustion time, and adsorption capacity at breakthrough were evaluated. With increasing bed height and decreasing flow rate and initial concentration, the breakthrough and exhaustion time were observed to favorably increase. Moreover, the adsorption capacity at breakthrough was observed to increase with decreasing initial concentration and flow rate and increasing bed height. The maximum adsorption capacity at breakthrough of 13.49 mg/g for Pb(II), 12.14 mg/g for Cu(II), and 10.29 mg/g for Ni(II) was attained at an initial influent concentration of 200 mg/L, bed height of 2.0 cm, and flow rate of 0.4 mL/min. Adsorption data were fitted with Adams-Bohart, Thomas, and Yoon-Nelson models. Experimental breakthrough curves were observed to be in good agreement (R2>0.85 and E%<50%) with the predicted curves generated by the kinetic models. This study demonstrates the effectiveness of CCB in the removal of Pb(II), Cu(II), and Ni(II) from a ternary metal solution
- …