7 research outputs found

    Innate Immunity Crosstalk with Helicobacter pylori: Pattern Recognition Receptors and Cellular Responses

    Get PDF
    Helicobacter pylori is one of the most successful gastric pathogens that has co-existed with human for centuries. H. pylori is recognized by the host immune system through human pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream signaling pathways. Following bacterial recognition, the first responders of the innate immune system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through phagocytic and inflammatory reaction. This review provides current understanding of the interaction between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by PRRs, and the subsequent signaling pathway activation in host innate immune cells

    An Overview of <i>Helicobacter pylori</i> Survival Tactics in the Hostile Human Stomach Environment

    No full text
    Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development

    <i>Chlamydiaceae</i>: Diseases in Primary Hosts and Zoonosis

    No full text
    Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms

    Lung–infiltrating T helper 17 cells as the major source of interleukin-17A production during pulmonary Cryptococcus neoformans infection

    No full text
    Background: IL-17A has emerged as a key player in the pathologies of inflammation, autoimmune disease, and immunity to microbes since its discovery two decades ago. In this study, we aim to elucidate the activity of IL-17A in the protection against Cryptococcus neoformans, an opportunistic fungus that causes fatal meningoencephalitis among AIDS patients. For this purpose, we examined if C. neoformans infection triggers IL-17A secretion in vivo using wildtype C57BL/6 mice. In addition, an enhanced green fluorescence protein (EGFP) reporter and a knockout (KO) mouse models were used to track the source of IL-17A secretion and explore the protective function of IL-17A, respectively. Results: Our findings showed that in vivo model of C. neoformans infection demonstrated induction of abundant IL-17A secretion. By examining the lung bronchoalveolar lavage fluid (BALF), mediastinal lymph node (mLN) and spleen of the IL-17A-EGFP reporter mice, we showed that intranasal inoculation with C. neoformans promoted leukocytes lung infiltration. A large proportion (~ 50%) of the infiltrated CD4+ helper T cell population secreted EGFP, indicating vigorous TH17 activity in the C. neoformans-infected lung. The infection study in IL-17A-KO mice, on the other hand, revealed that absence of IL-17A marginally boosted fungal burden in the lung and accelerated the mouse death. Conclusion: Therefore, our data suggest that IL-17A is released predominantly from TH17 cells in vivo, which plays a supporting role in the protective immunity against C. neoformans infection

    T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses

    Get PDF
    T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.Funding Agencies|Universiti Malaya Research Grant [RP021A-13HTM]</p

    Diversity of endocervical microbiota associated with genital Chlamydia trachomatis infection and infertility among women visiting obstetrics and gynecology clinics in Malaysia.

    No full text
    The cervical microbiota constitutes an important protective barrier against the invasion of pathogenic microorganisms. A disruption of microbiota within the cervical milieu has been suggested to be a driving factor of sexually transmitted infections. These include Chlamydia trachomatis which frequently causes serious reproductive sequelae such as infertility in women. In this study, we profiled the cervical microbial composition of a population of 70 reproductive-age Malaysian women; among which 40 (57.1%) were diagnosed with genital C. trachomatis infection, and 30 (42.8%) without C. trachomatis infection. Our findings showed a distinct compositional difference between the cervical microbiota of C. trachomatis-infected subjects and subjects without C. trachomatis infection. Specifically, significant elevations of mostly strict and facultative anaerobes such as Streptococcus, Megasphaera, Prevotella, and Veillonella in the cervical microbiota of C. trachomatis-positive women were detected. The results from the current study highlights an interaction of C. trachomatis with the environmental microbiome in the endocervical region
    corecore