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Abstract: Helicobacter pylori is one of the most successful gastric pathogens that has co-existed
with human for centuries. H. pylori is recognized by the host immune system through human
pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors
(CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream
signaling pathways. Following bacterial recognition, the first responders of the innate immune
system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through
phagocytic and inflammatory reaction. This review provides current understanding of the interaction
between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by
PRRs, and the subsequent signaling pathway activation in host innate immune cells.

Keywords: Helicobacter pylori; innate immune activation; pattern recognition receptors; TLRs; CLRs;
NLRs; RLRs; macrophages

1. Introduction

Helicobacter pylori is a microaerophilic, Gram-negative bacterium that colonizes the
gastric epithelium of roughly half of the world’s population [1,2]. Although its infection
remains asymptomatic in the majority of infected individuals, some patients develop gastro-
duodenal pathologies that progress into gastritis, peptic ulcer, gastric adenocarcinoma, and
mucosa-associated lymphoid tissue lymphoma [3,4]. The unique characteristics of H. pylori
contribute to its efficient infection in human hosts. For instance, the helical shape of the
bacteria, its ability to produce urease, and its flagella-dependent corkscrew movement
pattern allow bacterial invasion and colonization at the unconducive gastric mucosal layer.
The release of virulence proteins, such as vacuolating cytotoxin A (VacA) or cytotoxin-
associated gene A (CagA) through type IV secretion system (T4SS), causes damage to the
gastric epithelial cells and initiates the inflammatory reaction that precedes gastritis and
gastric carcinoma.

The host innate immune system is the first layer of defense against foreign pathogen
invasion. H. pylori infection triggers activation of neutrophils, macrophages, and den-
dritic cells through the recognition of the bacteria motifs via innate immune receptors [5].
Interestingly, evidence has increasingly revealed the exploitation of immune cells and
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pattern recognition receptors (PRRs) to circumvent immune activation during H. pylori in-
fection [6,7]. This warrants further understanding on the interaction between host immune
response and H. pylori.

This current review discusses the interaction of H. pylori with the host innate immune
system, from the molecular recognition by PRRs to the response of innate immune cells
toward H. pylori. This helps in the comprehension of H. pylori–host interactions based on
the latest literature, hence providing possibilities for developing effective treatments and
prophylactic strategies in the future.

2. Immune Recognition of H. pylori

Immune activation elicited by H. pylori begins with the recognition of the bacterial-
pathogen-associated molecular patterns (PAMPs) by PRRs that are expressed by the innate
immune cells or gastric epithelial cells. The major classifications of PRRs, including toll-like
receptors (TLRs), NOD-like receptors (NLRs), C-type lectin receptors (CLRs), and retinoic
acid-inducible gene (RIG)-I-like receptors (RLRs), are all involved in H. pylori recognition
and innate immune activation [8–10]. Figure 1 depicts the interaction of different PRRs
with H. pylori ligands and their downstream signaling pathway activation.
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Figure 1. Activation of pattern recognition receptors (PRRs) by H. pylori. Toll-like receptors (TLRs) 2, 4,
and 5 recognize different extracellular bacterial factors to mediate MyD88-dependent or -independent
activation of proinflammatory cytokine secretion. TLR7/8/9 recognize ingested bacterial DNA or
single-stranded RNA (ssRNA) in phagosomes for activation of type I interferons production. Tran-
scription factors NF-kB, activator protein 1 (AP1), and IRF3/7 play prominent roles in transactivation
of inflammatory cytokines and type I interferons. C-type lectin-like receptors (CLRs) including
MINCLE also induce NF-kB through interaction with CARD9/BCL10/MALT1. DC-SIGN transmits
signals through an unknown pathway during H. pylori infection. NOD-like receptors (NLRs) such
as NOD2 activate the inflammasome complex to induce production and maturation of IL-1β and
IL-18. RIG-I-like receptors (RLRs) such as retinoic acid-inducible gene I (RIG-I) are activated by
5′triphosphate (PPP) single-stranded RNA, leading to conformation change, which subsequently
activates Tank-binding kinase 1 (TBK1). This, in turn, causes production of type I interferons through
IRF3/7 signaling.
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2.1. Toll-Like Receptors (TLRs)

TLRs are a family of type I transmembrane proteins. Each receptor harbors a leucine-
rich repeat ectodomain, a transmembrane region involved in PAMP recognition, and an
intracellular Toll-IL-1 receptor (TIR) domain to mediate signal transduction. Upon binding
to PAMPs, TLRs form complexes and activate either myeloid differentiation primary
response 88 (MyD88)-dependent or -independent cascade to switch on nuclear factor kappa
B (NF-κB) or interferon regulatory factors (IRFs) transcription factors, thus initiating an
immune reaction to counter the pathogen invasion [11]. There are a total of 10 TLRs
in humans, some of which (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10) are present
on cellular plasma membranes to recognize extracellular microbial components such as
lipopolysaccharide (LPS), lipoproteins, and peptidoglycans; others (TLR3, TLR7, TLR8,
and TLR9) are attached within the lipid bilayer of the intracellular vesicles to recognize
microbial nucleic acids.

TLR4 is the most intensively studied member of the TLR family. It recognizes H. pylori
LPS [11] and activates the NF-kB transcription factor, which triggers production of pro-
inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-8, and IL-12 [12].
However, some studies denounce the role of TLR4 in immunity to H. pylori [13–16]. Instead,
TLR2 was suggested as the receptor for H. pylori LPS despite its common role for detecting
bacterial lipoproteins [17]. Together with TLR10, the TLR2/TLR10 heterodimer elicits
NF-κB activation following exposure to heat-inactivated H. pylori or LPS [7,18]. H. pylori
LPS-bound TLR2 also interacts with TLR4 to promote gastric metaplasia, dysplasia, and
adenocarcinoma [19,20].

TLR5 is well-known for its recognition of bacterial flagellin, and is constitutively
expressed on the surface of epithelial cells as well as some innate immune cells [21].
Previous research showed that live H. pylori or its purified flagellin activates the NF-κB
pathway through binding to TLR5 [13]. Significant upregulation of TLR5 is also detected
in THP-1 cells following H. pylori infection, causing cytokine secretion of IL-8 and TNF-α,
which initiate inflammation [22]. Recent studies have reported that components of T4SS,
such as CagL and CagY, in pathogenic H. pylori strains can serve as TLR5 agonists in driving
the innate immune activation and T helper 1 (TH1) cells’ recruitment [23,24].

Inside the intracellular vesicles, TLR7 and TLR8 recognize H. pylori RNA [13], whereas
TLR9 recognizes unmethylated CpG DNAs. TLR8 was shown to be induced in THP-1
monocytic cells following the phagocytosis of H. pylori [25], whereby an absence of MyD88
abrogated the production of cytokines such as IL-6 and IL-12 following H. pylori RNA
stimulation [26]. H. pylori or its purified DNA induces secretion of IL-8 in neutrophils.
Depletion of TLR9, by neutralizing antibodies or inhibitory oligonucleotide, abrogates
IL-8 production, suggesting its vital involvement in the bacterial recognition and cell
activation [27]. Intriguingly, another study indicated an anti-inflammatory role of TLR9,
possibly through the secretion of type I interferon (IFN) in the early stage of H. pylori
infection-mediated gastritis [28]. Mice deficient in TLR9 display an intensively augmented
inflammation and IL-17 production when infected with H. pylori strains with intact T4SS,
an important channel for transferring bacteria DNA into host cells [29]. It was reported
that TLR9-mediated transcriptional activity can differ depending on cellular polarity, in
which basolateral TLR9 signals IkappaB (IκB) degradation and activation of the NF-κB
pathway, whereas apical TLR9 inhibits NF-κB activation. Hence, we anticipate that the
anti-inflammatory response invoked by TLR9 signaling following H. pylori infection may
be attributable to bacterial-T4SS-mediated immune suppression, which diverts TLR9 to the
apical surface to promote a tolerogenic response.

2.2. C-Type Lectin Receptors (CLRs)

CLRs belong to an important class of PRRs that bind to carbohydrate moieties using a
conserved carbohydrate-recognition domain (CRD). In general, CLRs induce downstream
signaling via two pathways: one involves immunoreceptor tyrosine-based activation motif
(ITAM)-containing adaptor molecules such as Fc receptor γ-chain (FcRγ); the other involves
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phosphatases or kinases that either directly or indirectly interact with cytoplasmic domain
of the receptor [30,31].

Among CLR family members, dendritic-cell-specific intercellular nonintegrin (DC-
SIGN) plays a pivotal role in H. pylori recognition and pathogenesis. DC-SIGN interacts
with mannose and fucose moieties, and is capable of releasing signals to modulate TLR
signaling. A study by Gringhuis, et al. [32] demonstrated that H. pylori, a fucose-expressing
bacteria, inhibits TH1 polarization by enhancing IL-10 and decreasing IL-12 production.
Manipulation of DC-SIGN by H. pylori also extends to their ability to spontaneously switch
the expression of Lewis antigens on LPS on or off, whereby the presence of Lewis antigenic
expression triggers DC-SIGN on dendritic cells to suppress TH1 polarization and vice
versa [33].

In addition to DC-SIGN, the expression of macrophage-inducible C-type lectin (MIN-
CLE) is also upregulated in THP-1 human monocytic cell line during direct or indirect
infection with H. pylori. Lipid cholesteryl acyl α-glucoside (αCAG) and cholesteryl phos-
phatidyl α-glucoside (αCPG) are components of H. pylori that bind to MINCLE to induce se-
cretion of proinflammatory cytokines such as tumor necrosis factor (TNF) and macrophage
inflammatory protein (MIP) in dendritic cells, hence exacerbating gastritis in the host [34].
The interactions between MINCLE with the Lewis antigens of H. pylori LPS, on the contrary,
induces an anti-inflammatory response in macrophages [35]. Taken together, H. pylori
exploits both DC-SIGN and MINCLE to evade the host immune response while inflicting
chronic inflammation.

2.3. NOD-Like Receptors (NLRs)

The human nucleotide-binding and oligomerization domain (NOD)-like receptor
(NLR) family consists of 22 members that share common features: an N-terminal effector
domain to mediate signal transduction, a centrally located nucleotide-binding domain
(NBD/NATCH) for oligomerization, and a C-terminal leucine-rich repeat (LRR) domain
for ligand sensing. NLRs are involved in the formation of inflammasome, which recruits
adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) to
cleave effector molecule pro-caspase-1 into active caspase-1 and mediate secretion of pro-
inflammatory cytokines IL-1 and IL-18. Some NLRs, such as NOD1 and NOD2, signal
mitogen-activated protein kinase (MAPK) and NF-κB in an inflammasome-independent
manner [36,37].

Gene expression analysis showed elevated NLRs levels, including NLRC4, NLRC5,
NLRP9, NLRP12, and NLRX1, in the H. pylori challenged human monocytic THP1 cells [38].
Kim, et al. [39] discovered that NOD2, but not NOD1, is required for the activation of
NLRP3 inflammasome and pro-IL-1β production in H. pylori challenged bone-marrow-
derived dendritic cells.

The production of mature IL-1β in dendritic cells can be triggered by H. pylori virulence
factor cytotoxin-associated gene pathogenicity island and CagL [39]. However, NLRP3
activation following acute H. pylori infection results in low levels of mature IL-1β secretion,
despite producing abundant premature pro-IL-1β, suggesting H. pylori interference with
NLRP3 inflammasome activity to avoid host immune reactions [40]. A deficiency of caspase-
1 and IL-1β, but not NLRP3, causes impairment of bacteria clearance from the stomach in
H. pylori infected mice [39], which may be due to the involvement of another pathway in
the cleavage of caspase-1, which is necessary for IL-1 maturation [41].

Interestingly, genetic polymorphisms involving different NLR members or pathway
molecules (NLRP3, NLRP12, NLRX1, and CARD8) are associated with the incidence of
gastric cancer. For instance, NLRP12 rs2866112 polymorphism increases the risk of H. pylori
infection [38]. More studies are required to determine the involvement and function of
these different members of NLRs family in H. pylori recognition. Together, these studies
indicate the participation of NLRs in H. pylori recognition and immune cell activation
through the release of IL-1.
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2.4. RIG-I-Like Receptors (RLRs)

RLRs consist of three members known as retinoic acid-inducible gene I (RIG-I),
melanoma differentiation association gene 5 (MDA5), and laboratory of genetics and
physiology 2 (LGP2), which detect intracellular RNAs to trigger MyD88-independent
secretion of type 1 interferon (IFN) [42].

It was reported that H. pylori 5′-triphosphorylated RNA can be recognized by the RIG-I
receptor [26]. HEK293 cells transfected with RIG-I expressing plasmid activate the IFNβ
promoter in response to H. pylori RNA stimulation. RIG-1 recognition of H. pylori RNA
occurs in a phosphate-dependent manner, as a prior RNA dephosphorylation or usage
of RIG-I K858E mutant, which cannot interact with 5’-triphosphate RNA, abrogates cell
activation [26].

Furthermore, a clinical study suggested that expression of RIG-1 significantly corre-
lates with poor gastric cancer prognosis [43]. Knockdown of RIG-1 using RNA interference
technology in human gastric cancer cell lines results in augmented cell migration, enhanced
division in G2/M phase, and higher cell viability [43], suggesting RIG-1 as a crucial compo-
nent for the prevention of cancer cell growth and invasion. A study using human gastric
biopsies revealed a significant upregulation of MDA5 expression in H. pylori infected sam-
ples, whereby the level of expression correlated with clinical parameters of gastric atrophy
and intestinal metaplasia [44].

3. Innate Immune Cell Activation and Suppression by H. pylori

The immune response against H. pylori is initiated across gastric epithelial cells (GECs),
either through the signaling or recruitment by activated GEC or through the direct recog-
nition of various bacterial components or virulence factors [45]. This causes a cascade of
innate immune cell activation by neutrophils, macrophages, and dendritic cells. Nonethe-
less, the host innate immune response can be a double-edged sword in the context of
H. pylori infection, where it controls both the bacterial load in the gastric mucosa, as well as
the proinflammatory responses that lead to gastritis. Hence, polymorphonuclear cells infil-
tration has been long used in histological analysis as an indicator of gastritis severity [46].
Figure 2 summarizes the mechanism utilized by H. pylori to promote inflammation and
enhance survival, as discussed in the following subsections.

3.1. Neutrophils

The extensive neutrophil recruitment and activation during H. pylori infection lead
to an excessive degree of inflammation and mucosal damage [47]. The peripheral blood
neutrophil to lymphocyte ratio was shown to be lower in H. pylori positive patients com-
pared with the uninfected individuals [48]. Neutrophils are highly sensitive to the presence
of H. pylori, mainly due to the secretion of the H. pylori virulence factor neutrophil activat-
ing protein (HP-NAP), which serves as a chemotactic factor [49,50]. Neutrophils rapidly
secrete cytokines IL-8, IL-1β, and TNF-α following H. pylori infection [51]. Additionally,
H. pylori infection induces hepatoma-derived growth factor (HDGF) expression to enhance
neutrophilic infiltration, which is pivotal in gastric carcinogenesis [52]. HDGF ablation in
a mouse model blocked neutrophil recruitment following H. pylori infection, and demon-
strated an alleviation of gastric lesions [52]. The presence of a flagellin A (FlaA)-positive
strain, and a subunit of the T4SS, CagL, induce the secretion of the proinflammatory
cytokine IL-1β from neutrophils [53].
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Figure 2. Innate immune cells interaction with H. pylori across gastric epithelial cells (GECs). Neu-
trophils are directly activated by bacterial antigens, including H. pylori neutrophil activating protein
(HP-NAP), type IV secretion system (T4SS), and flagellin A (FlaA), or indirectly through gastric
epithelial cells secretion of hepatoma-derived growth factor (HDGF). Activation may result in proin-
flammatory cytokines secretion (IL-8 and IL-1β) and the production of reactive oxygen species (ROS)
for the clearance of bacterial load. H. pylori can inhibit cathepsin C production to dampen neutrophil
activation. It can also lead to cellular carcinoembryonic antigen-related cell adhesion molecules
(CEACAMs) expression, which enhances neutrophils phagocytic activity without bacterial killing.
Macrophages can be activated by bacterial lipopolysaccharide (LPS) or by the presence of the viru-
lence gene cag pathogenicity island (cagPAI), resulting in mixed polarization of proinflammatory
(M1) with high expressions of IL-1β, IL-6, and ROS, and the anti-inflammatory (M2) macrophages.
Dendritic cells process bacterial antigens that are presented to T cells for differentiation. These cells
upregulate programmed death ligand 1 (PD-L1) on regulatory T cell (Treg) to increase IL-10 secretion,
leading to bacterial persistence. It can also upregulate proinflammatory cytokines IL-12 and IL-23 to
stimulate T helper 1 (TH1) and 17 (TH17) polarization, which releases high amounts of interferon-γ
(IFN-γ) and IL-17.

The activation of neutrophils can be dampened by H. pylori to promote bacterial
persistence. Cathepsin C expression was implicated in playing such a role, whereby
cagA-positive H. pylori strain is capable of inhibiting cathepsin C in gastric epithelial cells
to prevent neutrophils infiltration and bacterial clearance [54]. In addition, H. pylori is
able to activate specific cellular carcinoembryonic antigen-related cell adhesion molecule
(CEACAM) in order to promote bacterial uptake by neutrophils, while supporting their
intracellular survival through CEACAM–H. pylori outer membrane adhesin HopQ [55].

3.2. Monocytes/Macrophages

Monocytes and macrophages serve as phagocytes and antigen-presenting cells upon
H. pylori infection. They are responsible for the polarization of TH1 via secretions of IL-12
and IL-23 [56]. The importance of macrophages in H. pylori infection is highlighted by
their marked increases in inflammatory markers, cell motility [57], and infiltration into the
peritoneum as early as 2 days post-infection [58]. Furthermore, transient removal of CD11b+
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macrophage population was identified to reduce gastric pathology in H. pylori infected mice
without altering the bacterial load, implying its critical role in gastric pathology [59]. The
activation of macrophages also relies on bacterial factors, whereby the lipopolysaccharide
(LPS) inner -core heptose metabolites (ADP-heptose) reportedly induce NF-κB activation
and early maturation of the cells [60].

Recently studies highlighted the involvement of the Notch signaling pathway in
H. pylori challenged macrophages [61]. The upregulation of Notch ligand Jagged1 was
detected in macrophages co-cultured with H. pylori, and clinical specimens from H. pylori in-
fected patients displayed higher Jagged1+ macrophages [61]. The overexpression of Jagged1
in macrophages promotes bactericidal activity through facilitating pro-inflammatory me-
diator release. Conversely, siRNA-mediated knockdown or anti-Jagged1 neutralizing
antibodies attenuate these activities. Additionally, γ-secretase, an inhibitor of Notch signal-
ing was shown to suppress the function of macrophages against H. pylori infection through
nitric oxide (NO) production, proinflammatory cytokine secretion, phagocytosis, as well as
bactericidal activities [61].

Polarization of macrophages remains an important topic during H. pylori infection.
The classically activated macrophages (M1) display a vigorous proinflammatory response
and phagocytic function, leading to the reduction in bacterial load and enhanced pathol-
ogy; whereas alternatively activated macrophages (M2) exhibit anti-inflammatory and
immune-modulating functions during tissue remodeling and healing. It is evident that M1
polarization is prominent in H. pylori infected C57BL/6 mice, and can be further enhanced
with vaccination using the sublingual administration of H. pylori lysate, although a mixed
M1/M2 phenotype is commonly reported in human infection settings [62,63].

Factors influencing the polarization and subsequent outcome of infection have been
identified in various reports, including the expression of the cation channel transient
receptor potential melastatin 2 (TRPM2). The absence of TRPM2 promotes M1 polarization
in response to H. pylori infection. Mice deficient in TRPM2 demonstrate higher gastric
inflammation and lower bacterial colonization compared with control mice, owing to
overloading calcium levels in macrophages. High intracellular calcium levels elicit an
enhanced MAPK signaling pathway and increased production of iNOS and IL-6, which
perpetuate inflammation for the resolution of bacterial infection [64].

Another study highlighted the importance of matrix metalloproteinase 7 (MMP7)
during polarization. MMP7 null mice displayed increased M1 cells that synthesized
more IL-1β than the wildtype counterpart during both in vivo and ex vivo infection with
H. pylori [65]. Increased incidences of gastric hyperplasia and dysplasia were detected
when MMP was depleted in hypergastrinemic mice due to increased M1 macrophage
polarization and mucosal inflammation [65].

Apart from host factors, bacterial virulence, such as CagA, was also shown to influence
the M1/M2 balance. The phosphorylation of CagA increases gene expression encoding
heme oxygenase-1, causing macrophage polarization toward the M2 phenotype, which
functions poorly in bacterial elimination [66]. Taken together, the interplay between various
host and bacterial factors is crucial in controlling the outcome of infection, targeting at
achieving optimal activation for bacterial clearance (M1) and sufficient healing to prevent
pathology (M2).

To achieve long-term survival in the host, H. pylori develops strategies to impede
macrophage functions. One example is the bacterial ability to inhibit macrophage phago-
cytosis [67,68] and to induce macrophage arginase II (ARG2) to inhibit nitric oxide (NO)
production [69,70]. Additionally, H. pylori disrupts proliferation [71] and causes the apop-
totic program by promoting hydrogen peroxide release and mitochondrial membrane
depolarization [72,73]. Thus, the crosstalk between bacteria and macrophages is important
to determine if infection can be circumvented in the host.
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3.3. Dendritic Cells

H. pylori infection induces dendritic cells’ activation and secretion of cytokines IL-
10, IL-12, IL-6, and IL-8 in a dose-dependent manner [74]. It was identified that human
HLA-DR+ gastric dendritic cells and monocytes-derived dendritic cells engulf the bacteria
for antigen presentation to CD4+ T cells, which preferentially skews T cells into TH1 cells,
which release interferon-γ (IFN-γ) [75]. The induction of T helper 17 cells (TH17) is also
present alongside TH1 cells, as shown in other reports [76,77]. H. pylori cagPAI influences
the maintenance and development of TH1 and TH17 cells through augmenting the secretion
of IL-12 and IL-23 from dendritic cells [76,77].

In H. pylori infected pediatric patients, an increased expression of the high-affinity IgE
receptor (FcεRI) was observed on peripheral myeloid and plasmacytoid dendritic cells [78].
Monocyte-derived dendritic cells exhibit high FcεRI and IL-10 expressions, suggesting
H. pylori drives regulatory dendritic cell differentiation to diminish the hostile immune
environment [78]. The immunomodulatory role of dendritic cells was supported by Russler-
Germain, et al. [79], whose demonstrated that migratory classical dendritic cells promote
peripheral regulatory T cell differentiation to exert immune tolerance. Programmed cell
death ligand 1 (PD-L1)-expressing dendritic cells interact with PD-1-expressing T cells in
gastritis lesions to impede Helicobacter induced inflammation, thus warranting persistent
Helicobacter colonization in mice [80]. Additionally, H. pylori infection can impair the antigen-
presentation function of dendritic cells to T cells, thereby blocking TH1 differentiation [81].

4. Conclusions

H. pylori–mediated immune activation begins with the recognition of bacterial PAMPs
by gastric epithelial or immune cell PRRs. Upon recognition, a cascade of immune activa-
tion is made possible for bacterial clearance as well as chronic gut inflammation. Although
multiple studies have helped to deepen our understanding of host–H. pylori interactions,
more remains to be investigated to explain the different outcomes of H. pylori infection.
Recent studies have focused on identification of various PRRs-associated risk alleles [82],
which would provide a better understanding on the risk of infection and degree of severity.
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