1,281 research outputs found

    Front Matter

    Get PDF
    This file contains cover for Volume II, Issue II, Editorial Board, Acknowledgements

    StressGenePred: a twin prediction model architecture for classifying the stress types of samples and discovering stress-related genes in arabidopsis

    Get PDF
    Background Recently, a number of studies have been conducted to investigate how plants respond to stress at the cellular molecular level by measuring gene expression profiles over time. As a result, a set of time-series gene expression data for the stress response are available in databases. With the data, an integrated analysis of multiple stresses is possible, which identifies stress-responsive genes with higher specificity because considering multiple stress can capture the effect of interference between stresses. To analyze such data, a machine learning model needs to be built. Results In this study, we developed StressGenePred, a neural network-based machine learning method, to integrate time-series transcriptome data of multiple stress types. StressGenePred is designed to detect single stress-specific biomarker genes by using a simple feature embedding method, a twin neural network model, and Confident Multiple Choice Learning (CMCL) loss. The twin neural network model consists of a biomarker gene discovery and a stress type prediction model that share the same logical layer to reduce training complexity. The CMCL loss is used to make the twin model select biomarker genes that respond specifically to a single stress. In experiments using Arabidopsis gene expression data for four major environmental stresses, such as heat, cold, salt, and drought, StressGenePred classified the types of stress more accurately than the limma feature embedding method and the support vector machine and random forest classification methods. In addition, StressGenePred discovered known stress-related genes with higher specificity than the Fisher method. Conclusions StressGenePred is a machine learning method for identifying stress-related genes and predicting stress types for an integrated analysis of multiple stress time-series transcriptome data. This method can be used to other phenotype-gene associated studies.This work and publication costs were supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. NRF2017M3C4A7065887), and the Collaborative Genome Program for Fostering New Post-Genome Industry of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) (No. NRF-2014M3C9A3063541). This work was supported for W.J. by the Agenda program (No. PJ014307), Rural Development of Administration of Republic of Korea

    Impact of mutations in DNA methylation modification genes on genome-wide methylation landscapes and downstream gene activations in pan-cancer

    Get PDF
    In cancer, mutations of DNA methylation modification genes have crucial roles for epigenetic modifications genome-wide, which lead to the activation or suppression of important genes including tumor suppressor genes. Mutations on the epigenetic modifiers could affect the enzyme activity, which would result in the difference in genome-wide methylation profiles and, activation of downstream genes. Therefore, we investigated the effect of mutations on DNA methylation modification genes such as DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2 and TET3 through a pan-cancer analysis. First, we investigated the effect of mutations in DNA methylation modification genes on genome-wide methylation profiles. We collected 3,644 samples that have both of mRNA and methylation data from 12 major cancer types in The Cancer Genome Atlas (TCGA). The samples were divided into two groups according to the mutational signature. Differentially methylated regions (DMR) that overlapped with the promoter region were selected using minfi and differentially expressed genes (DEG) were identified using EBSeq. By integrating the DMR and DEG results, we constructed a comprehensive DNA methylome profiles on a pan-cancer scale. Second, we investigated the effect of DNA methylations in the promoter regions on downstream genes by comparing the two groups of samples in 11 cancer types. To investigate the effects of promoter methylation on downstream gene activations, we performed clustering analysis of DEGs. Among the DEGs, we selected highly correlated gene set that had differentially methylated promoter regions using graph based sub-network clustering methods. We chose an up-regulated DEGs cluster where had hypomethylated promoter in acute myeloid leukemia (LAML) and another down-regulated DEGs cluster where had hypermethylated promoter in colon adenocarcinoma (COAD). To rule out effects of gene regulation by transcription factor (TF), if differentially expressed TFs bound to the promoter of DEGs, that DEGs did not included to the gene set that effected by DNA methylation modifiers. Consequently, we identified 54 hypomethylated promoter DMR up-regulated DEGs in LAML and 45 hypermethylated promoter DMR down-regulated DEGs in COAD. Our study on DNA methylation modification genes in mutated vs. non-mutated groups could provide useful insight into the epigenetic regulation of DEGs in cancer.This research is supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. NRF-2017M3C4A7065887), the Collaborative Genome Program for Fostering New Post-Genome Industry of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) (No. NRF-2014M3C9A3063541), and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C3224). The funding bodies provided financial support but had no other role in the design of the study, data collection, analysis, and interpretation of data, decision to publish, or preparation of the manuscript

    Analysis of differentially expressed long non-coding RNAs in LPS-induced human HMC3 microglial cells

    Get PDF
    Abstract Background Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). Results We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. Conclusions These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors

    Extraintestinal Migration of Centrorhynchus sp (Acanthocephala: Centrorhynchidae) in Experimentally Infected Rats

    Get PDF
    Reptiles were known to serve as paratenic hosts for Centrorhynchus (Acanthocephala: Centrorhynchidae) in Korea, but the infection course in experimental animals was not elucidated yet. In this study, the tiger keelback snakes (Rhabdophis tigrinus) were collected and digested with artificial pepsin solution, and the larvae of Centrorhynchus were recovered from them. Then, the collected larvae were orally infected to rats for developmental observations. In rats, all the larvae were observed outside the intestine on day 3 post-infection (PI), including the mesentery and abdominal muscles. As for the development in rats, the ovary of Centrorhynchus sp. was observed at day 15 PI, and the cement glands were 3 in number. Based on the morphological characteristics, including the arrangement of proboscis hooks, these larvae proved to be a species of Centrorhynchus, and more studies were needed for species identification.

    Anisakis simplex Larvae: Infection Status in Marine Fish and Cephalopods Purchased from the Cooperative Fish Market in Busan, Korea

    Get PDF
    The infection status of marine fish and cephalopods with Anisakis simplex third stage larva (L3) was studied over a period of 1 year. A total of 2,537 specimens, which consisted of 40 species of fish and 3 species of cephalopods, were purchased from the Cooperative Fish Market in Busan, Korea, from August 2006 to July 2007. They were examined for A. simplex L3 from the whole body cavity, viscera, and muscles. A. simplex L3 were confirmed by light microscopy. The overall infection rate reached 34.3%, and average 17.1 larvae were parasitized per infected fish. Fish that recorded the highest infection rate was Lophiomus setigerus (100%), followed by Liparis tessellates (90%), Pleurogrammus azonus (90%), and Scomber japonicus (88.7%). The intensity of infection was the highest in Gadus macrocephalus (117.7 larvae per fish), followed by S. japonicus (103.9 larvae) and L. setigerus (54.2 larvae). Although abundance of A. simplex L3 was not seasonal in most of the fish species, 10 of the 16 selected species showed the highest abundance in February and April. A positive correlation between the intensity of L3 infection and the fish length was obvious in S. japonicus and G. macrocephalus. It was likely that A. simplex L3 are more frequently infected during the spring season in some species of fish. Our study revealed that eating raw or undercooked fish or cephalopods could still be a source of human infection with A. simplex L3 in Korea

    CD8+ T-cell Activation in Mice Injected with a Plasmid DNA Vaccine Encoding AMA-1 of the Reemerging Korean Plasmodium vivax

    Get PDF
    Relatively little has been studied on the AMA-1 vaccine against Plasmodium vivax and on the plasmid DNA vaccine encoding P. vivax AMA-1 (PvAMA-1). In the present study, a plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax has been constructed and a preliminary study was done on its cellular immunogenicity to recipient BALB/c mice. The PvAMA-1 gene was cloned and expressed in the plasmid vector UBpcAMA-1, and a protein band of approximately 56.8 kDa was obtained from the transfected COS7 cells. BALB/c mice were immunized intramuscularly or using a gene gun 4 times with the vaccine, and the proportions of splenic T-cell subsets were examined by fluorocytometry at week 2 after the last injection. The spleen cells from intramuscularly injected mice revealed no significant changes in the proportions of CD8+ T-cells and CD4+ T-cells. However, in mice immunized using a gene gun, significantly higher (P<0.05) proportions of CD8+ cells were observed compared to UB vector-injected control mice. The results indicated that cellular immunogenicity of the plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax was weak when it was injected intramuscularly; however, a promising effect was observed using the gene gun injection technique

    Indentation as a Technique to Assess the Mechanical Properties of Fallback Foods

    Get PDF
    A number of living primates feed partyear on seemingly hard food objects as a fallback. We ask here how hardness can be quantified and how this can help understand primate feeding ecology. We report a simple indentation methodology for quantifying hardness, elastic modulus, and toughness in the sense that materials scientists would define them. Suggested categories of fallback foodsā€”nuts, seeds, and root vegetablesā€” were tested, with accuracy checked on standard materials with known properties by the same means. Results were generally consistent, but the moduli of root vegetables were overestimated here. All these properties are important components of what fieldworkers mean by hardness and help understand how food properties influence primate behavior. Hardness sensu stricto determines whether foods leave permanent marks on tooth tissues when they are bitten on. The force at which a food plastically deforms can be estimated from hardness and modulus. When fallback foods are bilayered, consisting of a nutritious core protected by a hard outer coat, it is possible to predict their failure force from the toughness and modulus of the outer coat, and the modulus of the enclosed core. These forces can be high and bite forces may be maximized in fallback food consumption. Expanding the context, the same equation for the failure force for a bilayered solid can be applied to teeth. This analysis predicts that blunt cusps and thick enamel will indeed help to sustain the integrity of teeth against contacts with these foods up to high loads
    • ā€¦
    corecore