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Abstract 

Background:  Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, 
but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs 
and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their 
potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes 
and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA).

Results:  We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and 
MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network 
modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory 
agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only 
one module, showing little or even enhancing effect on the other.

Conclusions:  These results provide insight into, and a resource for studying, the regulation of microglia-mediated 
neuroinflammation and its potential therapy by small-molecule BET inhibitors.

Keywords:  Human microglia, Neuroinflammation, BET inhibitor, JQ1, Long non-coding RNA (LncRNA), RNA 
sequencing (RNA-seq), Differentially expressed long non-coding RNAs (DElncRNAs), Differentially expressed mRNAs 
(DEmRNAs)

Background
Microglia, the macrophages of the central nervous system 
(CNS), play crucial roles in its homeostasis and immune 
defense [1, 2]. In response to inflammatory stimuli such 
as lipopolysaccharide (LPS), these cells become polar-
ized to the M1 phenotype and produce pro-inflammatory 
cytokines and oxidative metabolites such as IL-1β, TNF, 
IL-6, and nitric oxide [3].

The bromodomain and extra-terminal (BET) family 
proteins are epigenetic readers that control the inflam-
matory response by regulating the expression of tran-
scription factors and cytokines in T cells, monocytes, 
and macrophages, and therefore are potential therapeu-
tic targets [4–6]. Small-molecule pan-BET inhibitors 
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such as JQ1 and I-BET151 protected mice against LPS-
induced sepsis [7] and attenuated the LPS-stimulated 
expression of pro-inflammatory genes in murine bone 
marrow-derived macrophages [8]. Similarly, JQ1 attenu-
ated pro-inflammatory chemokine, cytokine, and inter-
feron response genes in the LPS-treated murine glial 
cell line BV-2 [9], an observation that we confirmed and 
expanded in the human microglial cell line HMC3 [10]. 
Thus, it appears that the BET proteins also regulate 
neuroinflammation.

Our previous study of LPS/JQ1-treated HMC3 cells 
[10] determined their transcriptomes by RNA sequenc-
ing (RNA-seq), but limited the analysis to differentially 
expressed mRNAs (DEmRNAs), i.e. to protein-coding 
genes. However, long non-coding RNAs (lncRNAs), 
such as lincRNA-Cox2 [11], PACER [12], and THRIL 
[13], are emerging as additional players in gene regu-
lation [14, 15], including regulation of inflammatory 
genes [16–18]. Accumulating studies have shown that 
many lncRNAs, including Lethe [19], NEAT1 [20], 
AS-IL1α [21], and FIRRE [22], play crucial roles in the 
immune system by regulating excessive or uncontrolled 
inflammation.

The present study therefore extends our transcriptomic 
analysis of the LPS/JQ1-treated HMC3 cells into the cat-
egory of differentially expressed lncRNAs (DElncRNAs). 
By re-analyzing the published RNA-seq datasets [10], we 
identified (i) inflammation-related and BET inhibitor-
sensitive DElncRNAs, (ii) their correlated DEmRNAs, 
and (iii) potential functional networks that contain these 
two classes of transcripts.

Results
Approach
We first identified the LPS-induced DElncRNAs in 
the dataset GSE155408. Compared to the initial study 
[10], we added processing methods that are specifically 
designed to identify DElncRNAs (Fig. 1A); furthermore, 
we now used a stricter cutoff, which slightly downsized 
the DEmRNA data set (Supplementary Fig.  1A). We 
then identified the DEmRNAs that were correlated with 
the LPS-induced DElncRNAs. In parallel, we assessed 
whether or how the LPS-induced DE RNAs (including 
lncRNAs and mRNAs) were affected by JQ1. Next, we 
performed a network analysis in order to construct inter-
action modules incorporating the LPS-induced DElncR-
NAs and their correlated DEmRNAs. This was followed 
by pathway analysis in order to learn about the potential 
functional significance of these modules. Finally, we con-
structed a corresponding protein–protein interaction 
network.

Identification of DElncRNAs and DEmRNAs in LPS‑treated 
HMC3 cells
In the control vs. LPS-treated cells, we identified a total 
of 5 DElncRNAs (all upregulated; Fig. 1B and C) and 99 
DEmRNAs (98 upregulated and 1 downregulated; Sup-
plementary Fig.  1A). Conversely, the DElncRNAs and a 
majority of the DEmRNAs tended to be downregulated 
or unaffected by JQ1. When LPS and JQ1 were combined, 
JQ1 further increased the expression of the two DElncR-
NAs that were most increased by LPS (AC083837.1 and 
LINC02605), but partially (MIR3142HG) or fully 
(MIR155HG  and IRF1-AS1) neutralized the LPS effect 
on the other DElncRNAs (Fig. 1C). Likewise, JQ1 coun-
teracted LPS or did not alter its effect for the majority of 
DEmRNAs, but enhanced the LPS effect in some cases. 
We note that the above DElncRNAs had not yet been 
identified in the HMC3 cells; the DEmRNAs are often 
inflammation- and immunity-related (e.g., CCL20, CSF3, 
CXCL10, TNF, and CXCL8) (Supplementary Fig. 1B and 
C). The up- and downregulated DElncRNAs and DEmR-
NAs are listed in Supplementary Table 1.

Correlations between DElncRNAs and DEmRNAs
The heat map in Fig.  2 visualizes the Pearson correlation 
coefficient (r) between the DElncRNAs and DEmRNAs; 
numerical values are listed in Supplementary Table  2. 
When including all 5 LPS-induced DElncRNAs and all 
99 LPS-induced DEmRNAs into the analysis, a total of 
211 DElncRNA-DEmRNA pairs (defined as |r|≥ 0.75 and 
padj ≤ 0.01) were identified. Specifically, MIR155HG, IRF1-
AS1, AC083837.1, LINC02605, and MIR3142HG were 
paired with 73, 57, 36, 21, and 24 DEmRNAs, respectively.

Identification of DElncRNA‑DEmRNA network modules
In order to find potential interactions, we constructed 
co-expression networks based on the above correlations 
between the DElncRNAs and DEmRNAs. The result-
ing nodes and relations fell into two modules, which we 
dubbed “large turquoise” and “small cyan” (Fig.  3). The 
large turquoise module was defined by IRF1-AS1 and 
MIR155HG (the two DElncRNAs that were least upreg-
ulated by LPS); the small cyan module was defined by 
AC083837.1, LINC02605, and MIR3142HG (the DElncR-
NAs that were more strongly induced by LPS). Within 
these modules, MIR155HG has the maximum number of 
co-expressed genes.

We determined by chi-square test whether there was a 
significant difference in how the two modules respond to 
the JQ1 treatment (Supplementary Table 3). The mRNAs 
of the large turquoise module were significantly related 
to JQ1, while the mRNAs of the small cyan module were 
not related to JQ1. Specifically, out of 65 mRNAs in the 
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Fig. 1  Workflow and identification of DElncRNAs. A Schematic summarizing project workflow. B Volcano plots visualizing the effects of LPS and/
or JQ1 on the lncRNA levels in HMC3 human microglial cells; the treatments were performed in triplicates and the combined results are shown. 
The gray vertical dot lines indicate log2 FC of ≥ 1.2 and ≤ -1.2. The gray horizontal dot lines indicate –log(padj) ≤ 0.01. C Heat map showing the 
expression changes of the 5 LPS-induced lncRNAs that qualified as DElncRNAs by the criteria of this study (see Materials and methods), and the 
heat maps for the same DElncRNAs upon treatment with JQ1 or LPS + JQ1. The color scale represents the log2 FC values. DElncRNAs; differentially 
expressed lncRNAs, DEmRNAs; differentially expressed mRNAs, log2 FC; log2 fold change, GO; Gene Ontology, KEGG; Kyoto Encyclopedia of Genes 
and Genomes

(See figure on next page.)
Fig. 2  Correlation heat map of the DElncRNAs and DEmRNAs. Each column corresponds to one of the LPS-induced DElnRNAs, and the cells of the 
rows show for each LPS-induced DEmRNA the Pearson correlation (r value) with that given DElncRNA both in color code (according to the color 
scale shown on the right) and as the numerical value. A red cells indicate the positive correlation, while blue cells indicate the negative correlation, 
with higher correlation indicated by dark color intensity as shown by the color scale
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Fig. 2  (See legend on previous page.)
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large  turquoise module, the levels of 64 mRNAs were 
decreased by JQ1. In contrast, out of 29 mRNAs of the 
small cyan module, 11 were marginally affected and 
18 were increased. In more detail, the mRNA levels of 
the small cyan module that were highly correlated with 
MIR3142HG were reduced or marginally affected by 
JQ1, while the mRNAs that were highly correlated with 
AC083837.1 and LINC02605 showed increased expres-
sion or marginal changes.

To validate the two modules, which were identified 
on the basis of RNA-seq data, we repeated the LPS/JQ1 
treatments of the HMC3 cells and measured the expres-
sion levels of the DElncRNAs and selected (i.e., highly 
correlated, inflammation-related) DEmRNAs. In the large 
turquoise module, JQ1 mostly neutralized the LPS effect 
(22 of 23 tested mRNAs, both tested lncRNAs) (Fig.  4 
and Supplementary Fig.  2), whereas in the small cyan 
module, most of the LPS-stimulated RNAs were margin-
ally affected or even further increased by the additional 
presence of JQ1 (15 of 17 mRNAs, 1 of 2 tested lncRNAs) 

(Fig.  5 and Supplementary Fig.  2). In this study, prim-
ers for qRT-PCR of lncRNAs were designed based on 
the sequences of IRF1-AS1-203 (ENST00000378953.8), 
MIR155HG-201 (ENST00000456917.2), and 
MIR3142HG-201 (ENST00000517927.1) transcripts.

To summarize, while the mRNAs of the large turquoise 
module mostly were decreased by JQ1, the mRNAs of the 
small cyan module showed a mixed response pattern.

Functional annotations
Having validated the network modules, we performed a 
functional classification and pathway enrichment analy-
sis of their respective mRNAs. In both the large turquoise 
(Fig. 6A) and small cyan (Fig. 6C) modules, Gene Ontol-
ogy (GO) analysis highlighted terms related to inflamma-
tory response such as type I interferon signaling pathway, 
defense response to virus, and chemokine-mediated 
signaling pathway. Similarly, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis (Fig.  6B and D) found a total of 32 KEGG pathways 

Fig. 3  Co-expression networks of DElncRNAs with DEmRNAs. A network was constructed using DElncRNA-DEmRNA pairs with Pearson correlation 
coefficient (r) value ≥ 0.75. We identified 632 connections between the 5 DElncRNAs and 99 DEmRNAs, which could be organized into a large 
turquoise (left) and a small cyan (right) module. Purple circles denote DElncRNAs, turquoise and cyan rectangles denote DEmRNAs. The yellow 
rectangles denote DEmRNAs that have core interactions with DElncRNAs. Solid lines indicate correlations
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Fig. 4  qRT-PCR validation of the large turquoise module. A Co-expression network image highlighting the mRNAs of the large turquoise 
module. Of the genes in the large turquoise module, only selected mRNAs are shown in bold and in red. B A list of selected (highly correlated, 
inflammation-related) DElncRNA-DEmRNA pairs in the large turquoise module. C The HMC3 cells were treated with DMSO, LPS, and/or with JQ1, 
and selected DElncRNAs and DEmRNAs of the large turquoise module assessed by qRT-PCR. The RNA levels are normalized to GAPDH transcript 
levels. Dark green indicates lncRNA and light green indicates mRNA. The data represent three independent experiments. The values are the 
mean ± SEM of triplicate experiments (*p < 0.05 and **p < 0.001)

Fig. 5  qRT-PCR validation of the small cyan module. A Co-expression network image highlighting the mRNAs of the small cyan module. 
Of the genes in small cyan module, only selected mRNAs are shown in bold and in red. B A list of selected DElncRNA-(highly correlated, 
inflammation-related) DEmRNA pairs in the small cyan module. C The HMC3 cells were treated with DMSO, LPS, and/or with JQ1, and selected 
DElncRNAs and DEmRNAs of the small cyan module assessed by qRT-PCR. The RNA levels are normalized to GAPDH transcript levels. Dark blue 
indicates lncRNA and light blue indicates mRNA. The data represent three independent experiments. The values are the mean ± SEM of triplicate 
experiments (*p < 0.05 and **p < 0.001)
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(FDR ≤ 0.05, DEmRNA counts ≥ 4) predominantly 
related to inflammation, such as TNF, IL-17, NOD-like 
receptor, TLR, and NF-kappa B signaling. The main func-
tions enriched in both modules are related to immune 
and inflammation. However, we found that apoptosis and 
cell adhesion-related functions were more enriched in 
the large turquoise module. The GO and KEGG analysis 
results of the total mRNAs are shown in Supplementary 
Fig. 1B and C.

Protein–protein interaction (PPI) network analysis
The PPI network mathematically calculates the physical 
interactions between proteins in cells, which allowing a 
molecular assessment at the molecular and system level. 
We constructed a PPI network of DEmRNAs, which 

highly correlated DElncRNAs using the STRING data-
base (Fig.  7). The PPI network contained 63 nodes and 
332 edges in the co-expressed mRNAs of the large tur-
quoise module (related to the MIR155HG and IRF1-AS1 
lncRNAs) and 29 nodes and 90 edges in the co-expressed 
mRNA of the small cyan module (related to the 
AC083837.1, LINC02605, and MIR3142HG lncRNAs). 
The top 5 mRNAs that had the highest node degrees in 
the large turquoise module were IL1B (degree = 33), IRF1 
(degree = 31), IL6 (degree = 29), CXCL10 (degree = 28), 
and TNFSF10 (degree = 27). The top 5 mRNAs that 
had the highest node degrees in the small cyan module 
were TNF (degree = 21), CXCL8 (degree = 18), NFK-
BIA (degree = 18), CXCL1 (degree = 12), and CXCL2 
(degree = 12).

Fig. 6  GO and KEGG pathway analyses of the DElncRNAs and DEmRNAs. Shown are the GO term (A, C) and KEGG pathway enrichment (B, D) 
analyses of the large turquoise (A, B) and small cyan (C, D) modules. In the GO term analyses, the numbers of genes and false discovery rate (FDR) 
values are displayed for the top 5 GO terms in biological process (BP; upper panel), cellular component (CC; middle panel), and molecular function 
(MF; bottom panel). The blue column is the count value indicating the number of genes enriched in the GO term, and the red line is the -log10 
(FDR) value. In the KEGG pathway enrichment analyses, each row represents an enriched function, and the size of the bubble represents the p-value 
(KOBAS, http://​kobas.​cbi.​pku.​edu.​cn). The KOBAS algorithm divides the clusters according to the values computed for the enriched pathway, and 
the color of each bubble represents a different cluster

http://kobas.cbi.pku.edu.cn
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Discussion
In this study, we identified 5 DElncRNAs in LPS-treated 
HMC3 human microglial cells. 4 of these transcripts 
(AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) 
have not previously been invoked in the microglial 
inflammatory response. We further found that the 
BET inhibitor JQ1 can exert both positive and negative 
effects on the LPS-induced DElncRNAs. Importantly, 

we were able to correlate the novel DElncRNAs with 
inflammation-related DEmRNAs, in line with the idea 
that the DElncRNAs modulate the microglial immune 
response. More specifically, we found that the LPS-
induced DElncRNAs and their correlated mRNAs fall 
into two modules that we dubbed “large turquoise” 
(defined by IRF1-AS1 and MIR155HG) and “small cyan” 
(defined by AC083837.1, LINC02605, and MIR3142HG). 

Fig. 7  Protein–protein interaction (PPI) network analysis of DEmRNAs. Shown are the PPI analyses of the large turquoise (A) and small cyan (B) 
modules. The potential interactions of the proteins encoded by DElncRNA-correlated DEmRNA were determined by STRING online software, using 
a combined score > 0.7 as cut-off criterion. Lines indicate associations/interactions between genes. The larger the number of connections of a given 
gene (“node”), the higher the connectivity. A high connectivity indicates the importance of a gene in the PPI network. The color represents the log2 
FC values and the size of the bubble represents the p-value
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Interestingly, JQ1 affected their patterns in opposite 
ways: Inflammation processes were decreased by JQ1 in 
the large turquoise module, but marginally affected or 
even significantly increased in the small cyan module. We 
performed qRT-PCR to verify the expression of lncRNAs 
and mRNAs of the divided modules based on the Pearson 
correlation coefficient (r) of DElncRNAs-DEmRNAs. We 
found some genes with conflicting DElncRNAs-DEmR-
NAs correlations as a result of qRT-PCR, which appeared 
as a probability of false-positive in Pearson’s correlation 
analysis. Pearson correlation analysis is the commonly 
used analysis method to measure the strength of associa-
tion in a linear relationship between two datasets based 
on the mapped read count value. Although the Pearson 
correlation analysis result is reliable, it can have false pos-
itives due to the influence of several variables such as the 
magnitude of the slope at which the points are clustered 
and the heteroscedasticity [23], and thus results of RNA-
seq analysis and qRT-PCR may be different. Therefore, 
verification of qRT-PCR of RNA-seq data is necessary.

As a result of co-expression network analysis, PPI net-
work analysis, and functional annotation analysis, we 
found that genes and biological terms related to immune 
response, inflammatory responses, cytokine, and 
chemokine activity were enriched in both modules, and 
TNFα and NF-κB signaling-related genes were also found 
in both modules. Interestingly, in terms of inflammatory 
response, the large turquoise module was enriched with 
interferon signaling-related functions, and the small cyan 
module was enriched with the CXC chemokine in par-
ticular. Regarding cell proliferation, survival, and metab-
olism, the large turquoise module was associated with 
negative regulation of metabolic processes, and positive 
regulation of apoptotic processes such as TRAIL signal-
ing and necroptosis. On the other hand, the small cyan 
module showed positive regulation of metabolic pro-
cesses and more enriched MAPK signaling regulation 
including activated tak1 mediates p38 mapk activation 
compared to the large turquoise module.

As summarized above, TNFα-related genes (including 
also some TNF family members themselves) and NF-κB-
related genes (including also NF-κB components) are 
present in both modules. As such, this is in line with the 
known roles of the TNFs and NF-κB as global regulators 
of inflammation, i.e. as regulators of multiple aspects of 
inflammation. However, the response of the TNFα- or 
NF-κB-related genes to JQ1 is different between the 
two modules, such that the TNFα- or NF-κB-related 
genes are downregulated along with the IFN-related 
genes in the large turquoise module but upregulated or 
unchanged along with the CXC chemokine genes in the 
small cyan module. Hence, different aspects of inflamma-
tion regulated by TNFs or NF-κB respond differently to 

JQ1, hence are under distinct epigenetic controls. Given 
that the TNFs and NF-κB are each related to more than 
one signaling pathway [24], it will be of interest to relate 
the large turquoise vs. small cyan modules to those spe-
cific pathways.

A complementary message emerges from the find-
ings that we made with the more specialized inflamma-
tory regulators, namely the IFNs and CXC chemokines. 
The direct biological effects of IFNs (mediated mainly 
by JAK/STAT signaling) are related especially, albeit not 
exclusively, to the modulation of immune system [25]; the 
direct biological effect of CXC chemokines is especially, 
albeit not exclusively, to promote neutrophil migration 
[26].

Here, we found that along with the TNFα/NF-κB genes 
of the large turquoise module, the IFN (mainly type I and 
II)-related genes (including IFNB1), which were limited 
to that same module, were also inhibited by JQ1. This 
agrees with the literature, since the direct inhibition 
of IFN response by BET inhibitors has been well docu-
mented [27]. Furthermore, we found that along with the 
TNFα/NF-κB-related genes of the small cyan module, 
the CXC chemokine genes (encoding CXCL1/2/3/5/8, all 
known to bind the chemokine receptor CXCR2), which 
were limited to that same module, were not inhibited 
by JQ1. We note in this respect that the GO term “acti-
vated tak1 mediated p38 mapk signaling activation” was 
also enriched in the small cyan module, in line with the 
known role of tak1/p38 signaling in CXC chemokine 
signaling [28]. Thus, not the type of cytokine per se (TNF 
vs. IFN vs. CXC chemokine) determines the outcome of 
JQ1 treatment, but the belonging to the large turquoise 
vs. small cyan module.

The selectivity of the gene response to I-BET has been 
reported to be related to the epigenetic status of the 
responding gene and the mechanism of BET recruit-
ment. Nicodeme E et al. reported that some LPS-induced 
cytokines and chemokines, such as Tnf, Ccl2-5 and 
Cxcl1/2, have a highly selective effect on I-BET in bone 
marrow-derived macrophages. Further study on the 
mechanism of selectivity for BET inhibitors is needed, 
and considering the previous reports, selectivity for 
BET inhibitors may be related to the BET recruitment 
pathway or histone acetylation level for each gene, and 
the binding of the BET protein to the gene promoter or 
super-enhancer.

Of note, the DElncRNAs that we identified in the LPS-
stimulated HMC3 cells have been observed in other 
inflammation-related contexts before. IRF1-AS1 (Lnc-
SLC22A5-6) was found to act as a positive modulator of 
the IFN response in esophageal squamous cell carcinoma 
(ESCC), functioning as a tumor suppressor by regulat-
ing cell proliferation and apoptosis [29]. MIR155HG 
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was increased in human M1 (inflammatory-type) mac-
rophages that were derived from monocytes by treat-
ment with LPS and IFN-gamma [30]. In human B cell 
lymphoma cells, LPS induced the nuclear translocation 
of an NF-κB p50/p65 heterodimer that could bind to 
the MIR155HG promoter, suggesting that MIR155HG 
was a direct NF-κB target gene [31]. MIR3142HG, the 
host gene for miR-3142 and miR-146a, was reported to 
regulate the IL-1β-induced inflammatory response in idi-
opathic pulmonary fibrosis (IPF) [32] and to be highly 
expressed in LPS-exposed human pulmonary micro-
vascular endothelial cells (HPMECs) [33]. It is therefore 
of interest that our study showed that the LPS-induced 
increase of MIR3142HG was reduced by JQ1. However, 
the expression levels of MIR3142HG-correlated genes 
are controversial. In our study, JQ1 was not or only mar-
ginally effective on the MIR3142HG-correlated genes. 
Finally, LINC02605 (IL7-AS; Lnc-ZC2HC1A-1) was 
reported to regulate the immune response in a cell-type 
specific manner [34]. IL7-AS is a positive regulator of the 
IL1β-induced inflammatory response in human A549 
epithelial cells, but a negative regulator in LPS-stimulated 
human THP-1 monocytes and mouse RAW 264.7 mac-
rophages. Additionally, knockdown of IL7-AS increased 
the IL-6 release in IPF-derived fibroblasts, indicating that 
it is a negative regulator [32]. Our co-expression network 
analysis showed that while LINC02605 was induced by 
LPS, neither LINC02605 nor its correlated genes were 
significantly affected by JQ1. Interestingly, this was 
observed for all three DElncRNAs and their correlated 
genes in the small cyan module. These results are consist-
ent with our previous transcriptome analyses of human 
and mouse microglial cells and mouse bone marrow-
derived macrophages [8–10].

Conclusion
Here, we present a comprehensive analysis of inflamma-
tion-related DElncRNA and DEmRNA expression pro-
files and functional networks in the human microglial 
cell line HMC3. We identified 5 DElncRNAs (including 
4 novel ones in microglia) and 99 DEmRNAs. We con-
structed DElncRNA-DEmRNA co-expression networks, 
which fell into two separate modules, and investigated 
their functions and pathways, which – for both mod-
ules—turned out as largely known to be inflammation-
related. We determined that although considered as an 
anti-inflammatory agent, the BET inhibitor JQ1 regu-
lates the two modules differently, showing an almost uni-
form anti-inflammatory effect on one module, but little 
or even enhancing effect on the other. This interesting 
result will have to be complemented and validated with 
methods such as knockdown and overexpression; it is 

also of interest whether it can be extended to other mod-
els of neuroinflammation. Altogether, the RNA expres-
sion modules that we identified here provide a resource 
for further studies of human microglial neuroinflamma-
tion through both computational analysis and functional 
approaches.

Materials and methods
Identification of differentially expressed lncRNAs 
and mRNAs
For this study, we used the RNA-seq data of our previ-
ous paper (GSE155408). To identify DElncRNAs, a 
comprehensive reference list of known lncRNAs was 
included in the processing of the RNA-seq data [10, 35, 
36]. Briefly, FASTQ data were quality controlled and 
trimmed with Trimmomatic (version 0.36) [37]. The 
FASTQ files were aligned using STAR (version 2.7.8) [38] 
alignment software with the GENCODE Homo sapiens 
reference sequence GRCh38 (Release 27). DElncRNAs 
and DEmRNAs were normalized to sequencing depth 
and RNA composition using the median method with 
default parameters of DESeq2 [39]. Differential expres-
sion analysis of lncRNA and mRNA was conducted using 
the DESeq2 R package. The DElncRNAs and DEmR-
NAs were selected with a cutoff of | log2 fold change 
(log2 FC) | ≥ 1.2, | log2 FC | ≤ -1.2, and adjusted p-value 
(padj) ≤ 0.05 in LPS-treated HMC3 cells.

Weighted gene co‑expression network analysis (WGCNA)
First, the Pearson correlation coefficient (r) values were 
calculated to assess the similarity of the expression pat-
terns of transcripts. Then, a scale-free network was 
obtained by weighting the correlation coefficient between 
transcripts with soft-thresholding power. A module is 
defined as a cluster of densely interconnected transcripts 
in terms of co-expression. We considered a |r|≥ 0.75 as 
a meaningful value. Cytoscape MCODE plug-in (Ver-
sion 3.4.0, available online: http://​www.​cytos​cape.​org/) 
[40] was applied for visualization of the co-expression 
networks.

Functional annotation and canonical pathway analysis
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID, version 6.8) software (http://​david.​
abcc.​ncifc​rf.​gov/​home.​jsp) was used to analyze the bio-
logical functions in the datasets [41]. DAVID uses a 
modified Fisher’s exact p-value to examine gene ontology 
(GO) enrichment. A false discovery rate (FDR) ≤ 0.05 was 
used as the criterion for GO term analysis. The KEGG 
Orthology Based Annotation System (KOBAS, version 
3.0) software (http://​kobas.​cbi.​pku.​edu.​cn/) [42] was 
used to analyze the enriched KEGG pathways [43] in the 

http://www.cytoscape.org/
http://david.abcc.ncifcrf.gov/home.jsp
http://david.abcc.ncifcrf.gov/home.jsp
http://kobas.cbi.pku.edu.cn/
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datasets. FDR ≤ 0.05 was used as the criterion for KEGG 
pathway enrichment analysis.

Cell culture and treatment
HMC3 human microglial cells were purchased from the 
Korean Cell Line Bank (Seoul, Korea). The cells were 
cultured in minimum essential medium (MEM) sup-
plemented with 10% fetal bovine serum (FBS), 100  IU/
ml penicillin, and 10  μg/ml streptomycin and were 
maintained in a humidified incubator at 37 °C with 95% 
air/5% CO2. The cells were treated with 100  ng/ml LPS 
(Sigma-Aldrich, St. Louis, MO, USA) and/or 500 nM JQ1 
for 4 h under standard culture conditions. The LPS and 
JQ1 were dissolved in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St. Louis, MO, USA).

Quantitative RT‑PCR
Total RNA extractions and cDNA preparation were 
performed according to the manufacture’s instruction 
(Takara, Shiga, Japan). Quantitative Reverse Transcrip-
tion PCR (qRT-PCR) was performed using an ABI 7500 
real-time PCR system (Applied Biosystems Inc., Fos-
ter City, CA, USA). The critical threshold (△CT) value 
was normalized by the expression of an internal control, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 
Finally, the results were also analyzed using the compara-
tive critical threshold (△△CT) method. The primers 
were designed using Primer Bank (http://​pga.​mgh.​harva​
rd.​edu/​prime​rbank/​index.​html) and are listed in Supple-
mentary Table 4.

Protein–protein interaction (PPI) network analysis
The Search Tool for the Retrieval of Interacting Genes 
(STRING, http://​string.​embl.​de/) [44] was used to 
construct the PPI network for DEmRNAs (minimum 
required interaction score > 0.7). The interaction rela-
tionships of the proteins encoded by DEmRNAs were 
searched by STRING online software, and the combined 
score > 0.7 was used as the cut-off criterion. Cytoscape 
MCODE plug-in (Version 3.4.0, available online: http://​
www.​cytos​cape.​org/) was applied for visualization of the 
protein–protein interaction. Additionally, the network 
analyzer was used to compute the basic properties of the 
PPI network, including average clustering co-efficient 
distribution, closeness centrality, average neighborhood 
connectivity, node degree distribution, shortest path 
length distribution, and topological coefficients.

Statistical analysis
All data are expressed as the mean ± standard deviation 
of the mean (SD). The chi-square test was performed 
to confirm whether there was a statistically significant 

relationship between categorical variables by JQ1 treat-
ment. A  p-value  or  padj ≤ 0.05 was considered signifi-
cant. The statistical analyses were performed using IBM 
SPSS Statistics ver. 26.0 (IBM Corporation, Armonk, 
NY, USA). All qRT-PCR data were tested using one-way 
ANOVA followed by Tukey’s honestly significant differ-
ence (HSD) post hoc test. Differences for which p ≤ 0.05 
were considered significant.
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