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Abstract

Background: Recently, a number of studies have been conducted to investigate how plants respond to stress at the
cellular molecular level by measuring gene expression profiles over time. As a result, a set of time-series gene
expression data for the stress response are available in databases. With the data, an integrated analysis of multiple
stresses is possible, which identifies stress-responsive genes with higher specificity because considering multiple
stress can capture the effect of interference between stresses. To analyze such data, a machine learning model needs
to be built.

Results: In this study, we developed StressGenePred, a neural network-based machine learning method, to integrate
time-series transcriptome data of multiple stress types. StressGenePred is designed to detect single stress-specific
biomarker genes by using a simple feature embedding method, a twin neural network model, and Confident Multiple
Choice Learning (CMCL) loss. The twin neural network model consists of a biomarker gene discovery and a stress type
prediction model that share the same logical layer to reduce training complexity. The CMCL loss is used to make the
twin model select biomarker genes that respond specifically to a single stress. In experiments using Arabidopsis gene
expression data for four major environmental stresses, such as heat, cold, salt, and drought, StressGenePred classified
the types of stress more accurately than the limma feature embedding method and the support vector machine and
random forest classification methods. In addition, StressGenePred discovered known stress-related genes with higher
specificity than the Fisher method.

Conclusions: StressGenePred is a machine learning method for identifying stress-related genes and predicting stress
types for an integrated analysis of multiple stress time-series transcriptome data. This method can be used to other
phenotype-gene associated studies.
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Background
Recently, cellular molecule measurement technologies,
such as microarray [1] and RNA-seq [2], can be used
to measure the expression levels of tens of thousands
of genes in a cell. Using these technologies, biologists
have measured the change in gene expression levels under
stress treatment over time. These time-series data are now
available in databases such as ArrayExpress [3] and GEO
[4]. To analyze of time-series transcriptome data, vari-
ous methods were developed based on machine learning
techniques such as linear regression, principal component
analysis (PCA), naive Bayes, k-nearest neighbor analysis
[5], simple neural network [6, 7], naive Bayes methods [8],
and ensemble model [9].

However, existing methods were designed to analyze
gene expression data of a single stress, not of multi-
ple stresses. Analyzing gene expression data of multiple
stresses can identify stress-responsive genes with higher
specificity because it can consider the effect of inter-
ference between stresses. However, since no method of
integrating multiple stress gene expression data has been
developed, this study aims to develop a method for an
integrated analysis of transcriptome of multiple stress
types.

Motivation
For the integrated analysis of transcriptome data of mul-
tiple stress, heterogeneous time-series analysis is should
be considered [10]. Heterogeneous time-series analysis is
a problem to analyze four-dimensional data of experimen-
tal condition (sample tissue, age, etc.), stress, time, and
gene, where experimental condition axis and time axis are
different among multiple time-series samples. Heteroge-
neous time-series analysis is explained in detail in the next
section.

Many algorithms have been developed to analyze gene
expression data. However, as far as we are aware of, there
is no readily available machine learning algorithm for
predicting stress types and detecting stress-related genes
from multiple heterogeneous time-series data. Support
vector machine (SVM) models are known to be power-
ful and accurate for classification tasks. Recently, SVMs
are extended for multi-class problems and also for regres-
sion prediction. However, applying SVM for predicting
stress-related genes and associating with phenotypes is
not simple since the essence of the problem is to select
small number of genes relevant to a few phenotypes.
In fact, there is no known readily available prediction
method for this research problem. Principal component
analysis (PCA) is designed for predicting traits from the
same structured input data, but it is not designed to ana-
lyze heterogeneous time-series data. Random forest (RF)
is a sparse classification method, so how significant a
gene is associated with stress is hard to be evaluated.

Naive Bayes method [8] can measure the significance of
genes, but it is not suitable for heterogeneous time-series
data input. Clustering is one of the widely used machine
learning approaches for gene expression data analysis.
The STEM clustering method [11] clusters genes accord-
ing to changes in expression patterns in time-series data
analysis, but does not accept heterogeneous time-domain
structure data.

Thus, we designed and implemented a neural network
model, StressGenePred, to analyze heterogeneous time-
series gene expression data of multiple stresses. Our
model used feature embedding methods to address the
heterogeneous structure of data. In addition, the analysis
of heterogeneous time-series gene expression data, on the
computational side, is associated with the high-dimension
and low-sample-size data problem, which is one of the
major challenges in machine learning. The data consists
of a large number of genes (roughly 20,000) and a small
number of samples (about less than 100). To deal with the
high-dimension and low-sample-size data problem, our
model is designed to share a core neural network model
between twin sub-neural network models: 1) biomarker
gene discovery model 2) stress type prediction model.
These two submodels perform tasks known in the com-
puter field as feature (i.e., gene) selection and label (i.e.,
stress type) classification, respectively.

Materials
Multiple heterogeneous time-series gene expression data
Multiple stress time-series gene expression data is a set
of time-series gene expression data. The k-th time-series
gene expression data, Dk , contains expression values for
three dimensional axes: gene axis, Gk = {gk1, . . . , gk|Gk |},
time axis, Tk = {tk1, . . . , tk|Tk |}, experimental condi-
tion axis, Fk = {fk1, . . . , fk|Fk |}. However, the structure
and values of time dimension and experimental condi-
tion dimension can be different in multiple samples, called
“heterogeneous time-series data.”

1. Heterogeneity of time dimension. Each time-series
data may have different number of time points and
intervals.

2. Heterogeneity of experimental condition
dimension. Each time-series data may have different
experimental conditions, such as tissue, temperature,
genotype, etc.

The time-series gene expression datasets of four stress
types
In this paper, we analyze multiple heterogeneous time-
series data of four major environmental stresses: heat,
cold, salt and drought. We collected the 138 sample time-
series data related to the four types of stress from Array-
Express [3] and GEO [4]. Figure 1 shows the statistics of
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Fig. 1 Dataset statistic summary. The number of stress types (left) and the frequency of time points (right) in the 138 sample time-series gene
expression data of four stress types

the collected dataset. The total dataset includes 49 cold,
43 heat, 33 salt, and 13 drought stress samples, and 65% of
the time-series data are measured at only two time points.
Every time point in each time-series data contains at least
two replicated values.

Methods
StressGenePred is an integrated analysis method of mul-
tiple stress time-series data. StressGenePred (Fig. 2)
includes two submodels : a biomarker gene discovery
model (Fig. 3) and a stress type prediction model (Fig. 4).
To deal with the high-dimension and low-sample-size
data problem, both models share a logical correlation layer
with the same structure and the same model parameters.
From a set of transcriptome data measured under various
stress conditions, StressGenePred trains the biomarker
gene discovery model and the stress type prediction
model sequentially.

Submodel 1: biomarker gene discovery model
This model takes a set of stress labels, Y, and gene expres-
sion data, D, as input, and predicts which gene is a
biomarker for each stress. This model consists of three
parts: generation of an observed biomarker gene vector,
generation of a predicted biomarker gene vector, and com-
parison of the predicted vector with the label vector. The
architecture of the biomarker gene discovery model is
illustrated in Fig. 3, and the process is described in detail
as follows.

Generation of an observed biomarker gene vector
This part generates an observed biomarker vector, Xk ,
from gene expression data of each sample k, Dk . Since
each time-series data is measured at different time points
under different experimental conditions, a time-series

gene expression data must be converted into a feature
vector of the same structure and the same scale. This pro-
cess is called feature embedding. For the feature embed-
ding, we symbolize the change of expression before and
after stress treatment by up, down, or non-regulation. In
detail, a time-series data of sample k is converted into
an observed biomarker gene vector of length 2n, Xk =
{xk1, . . . , xk2n}, where xk2n−1 ∈ {0, 1} is 1 if gene n is down-
regulation or 0 otherwise, xk2n ∈ {0, 1} is 1 if gene n is
up-regulation or 0 otherwise. For determining up, down,
or non-regulation, we use the fold change information.
First, if there are multiple expression values measured
from replicate experiments at a time point, the mean of
expression values is calculated for the time point. Then,
the fold change value is computed by dividing the maxi-
mum or minimum expression values for a time-series data
by the expression value at first time point. After that, the
gene whose fold change value > 0.8 or < 1/0.8 is consid-
ered as up or down regulation gene. The threshold value
of 0.8 is selected empirically. When the value of 0.8 is used,
the fold change analysis generates at least 20 up or down
regulation genes for all time-series data.

Generation of a predicted biomarker gene vector
This part generates a predicted biomarker gene vector, X′

k ,
from stress type label Yk . X′

k = {x′
k1, . . . , x′

2kn} is a vector
of the same size as the observed biomarker gene vector Xk .
The values of Xk ‘ means up or down regulation as same as
Xk . For example, xk2n−1 = 1 means gene n is predicted as
a down-regulated biomarker, or xk2n = 1 means gene n is
predicted as a up-regulated biomarker, for a specific stress
Yk .

A logical stress-gene correlation layer, W, measures the
weights of association between genes and stress types.
The predicted biomarker gene vector, X′

k , is generated by
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Fig. 2 StressGenePred’s twin neural network model architecture. The StressGenePred model consists of two submodels: a biomarker gene discovery
model (left) and a stress type prediction model (right). The two submodels share a “single NN layer”. Two gray boxes on the left and right models
output the predicted results, biomarker gene and stress type, respectively

multiplying stress type of sample k and the logical stress-
gene correlation layer, i.e., Yk × W . In addition, we use the
sigmoid function to summarize the output values between
0 to 1. The stress vector, Yk , is encoded as one-hot vec-
tor of l stresses, where each element indicates whether
the sample k is each specific stress type or not. Finally,
the predicted biomarker gene vector, X′

k , is generated like
below:

X′
k = sigmoid(Yk × W ) = 1

1 + exp(−Yk × W )

where W =
⎛
⎝

w11 w12 . . . w1n
. . . . . . . . . . . .

wl1 wl2 . . . wln

⎞
⎠

The logical stress-gene correlation layer has a sin-
gle neural network structure. The weights of the logical
stress-gene correlation layer are learned by minimizing
the difference between observed biomarker gene vector,
Xk , and predicted biomarker gene vector, X′

k .

Comparison of the predicted vector with the label vector
Cross-entropy is a widely-used objective function in logis-
tic regression problem because of its robustness to outlier-
including data [12]. Thus, we use cross-entropy as the
objective function to measure the difference of observed
biomarker gene vector, Xk , and predicted biomarker gene
vector, X′

k , as below:

lossW = −
K∑

k=1

(
Xklog(sigmoid(YkW ))

+(1 − Xk)log(1 − sigmoid(YkW ))
)

By minimizing the cross-entropy loss, logistic functions
of the output prediction layer are learned to predict the
true labels. Outputs of logistic functions can predict that
a given gene responds to only one stress or to multiple
stresses. Although it is natural for a gene to be involved
in multiple stresses, we propose a new loss term because
we aim to find a biomarker gene that is specific to a sin-
gle stress. To control relationships between genes and
stresses, we define a new group penalty loss. For each
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Fig. 3 Biomarker gene discovery model. This model predicts biomarker genes from a label vector of stress type. It generates an observed biomarker
gene vector from gene expression data (left side of the figure) and a predicted biomarker gene vector from stress type (right side of the figure), and
adjusts the weights of the model by minimizing the difference (“output loss” at the top of the figure)

Fig. 4 Stress type prediction model. This model predicts stress types from a vector of gene expression profile. It generates a predicted stress type
vector (left side of the figure) and compares it with a stress label vector (right side of the figure) to adjust the weights of the model by minimizing
the CMCL loss (“output loss” at the top of the figure)
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feature weight, the penalty is calculated based on how
much stresses are involved. Given a gene n, a stress vec-
tor gn is defined as gn =[ gn1, gn2, ..., gnl] with l stresses and
gnl = max(wl,2n, wl,2n+1). Then, the a group penalty is
defined as (

∑
(gn))2. Since we generate the output with a

logistic function, gnl will have a value between 0 and 1. In
other words, if gn is specific to a single stress, the group
penalty will be 1. However, if the gene n reacts to multi-
ple stresses, the penalty value will increase quickly. Using
these characteristics, the group penalty loss is defined as
below:

lossgroup = α

N∑
n=1

( L∑
l=1

gnl

)2

On the group penalty loss, hyper-parameter α regulates
effects of group penalty terms. Too large α imposes exces-
sive group penalties, so genes that respond to multiple
stresses are linked only to a single stress. On the other
hand, if the α value is too small, most genes respond to
multiple stresses. To balance this trade-off, we use well-
known stress-related genes to allow our model to predict
the genes within the top 500 biomarker genes at each
stress. Therefore, in our experiment, the α was set to 0.06,
and the genes are introduced in “Ranks of biomarker genes
and the group effect for gene selection” section.

Submodel 2: stress type prediction model
From biomarker gene discovery model, the relationships
between stresses and genes are obtained by stress-gene
correlation layer W. To build stress type prediction model
from feature vectors, we utilize the transposed logical
layer W T and define a probability model as below:

Ak = sigmoid
(

XkW T
)

Akl = sigmoid
( N∑

i=1
xkiwil

)

Matrix W is calculated from a training process of the
biomarker gene discovery model. Ak means an activation
value vector of stress types, and it shows very large devia-
tions depending on the samples. Therefore, normalization
is required and performed as below:

Anorm
k = Ak

N∑
n

xkn

For the logistic filter, these normalized embedded fea-
tures vectors encapsulate average weight stress-feature
relationship values that reduce variances among the vec-
tors with different samples. As another effect of the nor-
malization, absolute average weights are considered rather
than relative indicator like softmax. So, false positive rates

of predicted stress labels can be reduced. Using the nor-
malized weights Anorm

k , logistic filter is defined to generate
a probability as below:

gk(Anorm
k ) = 1

1 + bl × exp(Anorm
k − al)

where a and b are general vector parameters of size L of
logistic model g(x).

Learning of this logistic filer layer is started with nor-
malization of the logistic filter outputs. This facilitates
learning by regularizing the mean of the vectors. Then, to
minimize loss of positive labels and entropy for negative
labels, we adopted the Confident Multiple Choice Learn-
ing(CMCL) loss function [13] for our model as below:

lossCMCL(Yk , g(Anorm
k )) =

K∑
k=1

⎛
⎝(1 − Anorm

k )2 − β

L∑
l �=Yk

log(Anorm
k )

⎞
⎠

To avoid overfitting, a pseudo-parameter β is set by rec-
ommended setting from the original CMCL paper [13]. In
our experiments, β = 0.01 ≈ 1/108 is utilized.

Results
In this paper, two types of experiments were conducted to
evaluate the performance of StressGenePred.

Evaluation of stress type prediction
StressGenePred was evaluated for the task of stress type
prediction. The total time-series dataset (138 samples)
was divided randomly 20 times to build a training dataset
(108 samples) and a test dataset (30 samples). For the
training and test datasets, a combination analysis was per-
formed between two feature embedding methods (fold
change and limma) and three classification methods
(StressGenePred, SVM, and RF). The accuracy measure-
ment of the stress type prediction was repeated 20 times.

Table 1 shows that feature embedding with fold change
is more accurate in the stress type prediction than limma.
Our prediction model, StressGenePred, more correctly
predicted the stress types compared to other methods.

Table 1 Result of stress type prediction

Methods Accuracy

StressGenePred+FC 0.963

RF+FC 0.961

SVM+FC 0.945

StressGenePred+limma 0.821

RF+limma 0.853

SVM+limma 0.813

Three stress type prediction models, StressGenePred (our model), random forest
(RF) and support vector machine (SVM), are compared combined with two feature
embedding models, fold change (FC) and limma
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Then, we further investigated in which cases our stress
type prediction model predicted incorrectly. We divided
the total dataset into 87 samples of training dataset and
51 samples of test dataset (28 cold stress and 23 heat
stress samples). Then, we trained our model using train-
ing dataset and predicted stress types for the test dataset.
Figure 5 shows three of 51 samples were predicted wrong
in our model. Among them, two time-series data of cold
stress type were predicted salt then cold stress types,
and those samples were actually treated to both stresses
[14]. This observation implied our prediction was not
completely wrong.

Evaluation of biomarker gene discovery
The second experiment was to test how accurately
biomarker genes can be predicted. Our method was
compared with Fisher’s method. The p-value of Fisher’s
method was calculated using the limma tool for each gene
for each stress types (heat, cold, drought, salt). The genes
were then sorted according to their p-value scores so that
the most responsive genes came first.

Then, we collected known stress-responsive genes of
each stress type in a literature search, investigated EST
profiles of the genes, and obtained 44 known biomarker
genes with high EST profiles. We compared the rank-
ing results of our method and Fisher method with the
known biomarker genes. The Table 2 shows that 30 of 44
genes ranked higher in the results of our method than the
Fisher method. Our method was better in the biomarker
gene discovery than Fisher method (p = 0.0019 for the
Wilcoxon Signed-Rank test).

Our method is designed to exclude genes that respond
to more than one stress whenever possible and to detect
genes that only respond to one type of stress. To investi-
gate how this works, we collected genes known to respond
to more than one stress. Among them, we excluded genes
that resulted in too low a ranking (> 3, 000) for all stress
cases.

When comparing the results of our method to the Fisher
method for these genes, 13 of 21 genes ranked lower in
the result of our method than Fisher method (Table 3).
This suggests that our model detects genes that respond
only to one type of stress. Figure 6 shows a plot of
changes in expression levels of some genes for multiple
stresses. These genes responded to multiple stresses in
the figure.

Literature-based investigation for discovered biomarker
genes
In order to evaluate whether our method found the
biomarker gene correctly, we examined in literature the
relevance of each stress type to the top 40 genes. Our find-
ings are summarized in this section and discussed further
in the discussion section.

Fig. 5 Stress type prediction result. Above GSE64575-NT are cold
stress samples and the rest are heat stress samples.
E-MEXP-3714-ahk2ahk3 and E-MEXP-3714-NT samples are predicted
wrong in our model, but they are not perfectly predicted wrong
because they are treated to both salt and cold stress [14]
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Table 2 Gene rank comparison

Stress type Gene name Gene symbol Our method Fisher method

Heat

AT1G74310 ATHSP101 2 11

ATMG00650 NAD4L 5 44

AT4G10250 ATHSP22.0 11 9

AT4G27670 HSP21 12 7

AT1G16030 Hsp70b 14 16

AT2G32120 HSP70T-2 16 22

AT4G25200 ATHSP23.6-MI 17 3

ATMG00070 NAD9 19 54

AT5G09590 MTHSC70-2 26 51

AT5G12020 HSP17.6II 34 1

AT5G37670 36 21

AT2G26150 HSFA2 40 27

Cold

AT1G09350 AtGolS3 3 1

AT1G46768 RAP2.1 4 29

AT2G16890 18 16

AT5G17030 UGT78D3 21 68

AT4G38580 FP6 28 35

AT2G31360 ADS2 35 116

AT1G23020 FRO3 38 195

Salt

AT3G02480 1 2

AT1G52690 LEA7 2 1

AT5G59220 HAI7 4 4

AT5G06760 AtLEA4-5 6 11

AT1G43160 RAP2.6 10 12

AT4G05100 AtMYB74 18 50

AT1G54100 ALDH7B4 21 62

AT5G57050 ABI2 23 77

AT5G13330 Rap2.6L 26 36

AT1G52890 NAC019 28 15

AT3G04070 NAC047 29 73

AT3G48520 CYP94B3 31 27

AT4G19230 CYP707A1 33 75

AT1G07430 HAI2 36 16

Drought

AT2G46680 ATHB-7 3 1

AT1G52890 NAC019 4 15

AT3G03470 CYP89A9 11 271

AT2G18050 HIS1-3 12 21

AT1G29440 SAUR63 13 53

AT4G22950 AGL109 21 2002

AT4G32940 GAMMA-VPE 23 426

AT1G18650 PDCB3 25 778

AT1G56600 GolS2 31 33

AT2G21650 MEE3 38 855

AT4G30610 BRS1 39 468

The 44 known biomarker genes with high EST profiles are collected. In comparison
of our method (StressGenePred) with Fisher method, 30 of 44 known biomarker
genes (bold) are ranked higher in the result of our method than the Fisher method

In the case of heat stress, we identified heat-related
genes, including HSFA2, which are known to play an
essential role in the plant’s heat response. Heat shock
protein genes such as HSP101, HSP15.7, HSP17.6, HSP20-
like, Hsp21, Hsp22, Hsp70B, and Hsp70T-2 we have iden-
tified are known to be highly related to heat stress. Mito-
chondrial heat shock protein genes such as AtHSP23.6
and MTHSC70-2 and chloroplast position genes such as
HSP21 have also been identified. We predicted NADH
dehydrogenases of energy metabolism which are related
to heat stress.

In the case of salt stress, we have identified previously
known ABA-related genes, such as ABI2, ABF1, HAI1
and HAI2, and late embryonic development-rich protein
genes, such as AtLEA4-5, LEA7. Water biomarker genes
as ATD18, NAC019, NAC047 and RAP2.6 were identified.
We have also identified genes of common stress-response
class genes, such as ALDH7B4 and ALDH2B7, AtMYB74,
CYP707A1, and CYP94B3.

In the case of cold stress, we identified ADS2, AtGolS3,
FP6, FRO3, GSTU18, UDP-glucosyl transferase, some
lipid metabolism-related genes that are involved in a rear-
rangement of physical properties of the plasma membrane
and cell wall. In addition, we identified genes related to
development such as AGL20, BBX29, and GI. We also
identified water biomarker genes such as ABF1, BBX25,
and RAP2.1.

Finally, in the case of drought stress, we confirmed
the involvement of well-known genes such as HIS1-3,
NAC019 and SAUR63. Besides, we were able to identify
common biomarker genes such as development-related
AGL19 and CYP89A9. In addition, we predicted genes
involved in microorganism development and differenti-
ation such as ATHB-7, BRS1, GAMMA-VPE, GOLS2,
MEE3, and PDCB3.

Discussion
In this section, we discuss gene-stress relationship in
depth, referring to the current literature.

Biological function of heat stress-responsive genes
For heat stress, our model identified HSFA2, Hsp21,
Hsp22, Hsp70B, Hsp70T-2, HSP101, HSP20-like,
HSP17.6, HSP15.7, and NADH dehydrogenases. In heat
stress, HSFA2 takes an essential part of heat response
and may relate with histone methylation. HSFA2 is highly
inducible and a direct target of HSFA1. HSFA2 is known
to bind to the promoter of Hsp22 in vitro experiments
[15]. Hsp22 is an endomembrane-localized protein dur-
ing heat stress [16]. Hsp70 family proteins are well-known
proteins, however functionally diversified. Hsp21 is small
heat shock protein, which required for the development of
chloroplasts [17] and associates with the thylakoid mem-
branes [18]. HSP70 is a molecular chaperone and support
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Table 3 Rank comparison of multiple stress-responsive genes

Genename GOTerm Rank of our model Rank of fisher method

AT2G47180 heat,cold heat(243), cold(500) heat(39), cold(164)

AT5G37770 heat,cold heat(2007), cold(3414) heat(1878), cold(2510)

AT5G57560 heat,cold heat(1357), cold(1428) heat(235), cold(627)

AT5G58070 heat,cold heat(693), cold(111) heat(258), cold(167)

AT5G59820 heat,cold heat(1069), cold(512) heat(234), cold(128)

AT2G47180 heat,salt heat(243), salt(842) heat(39), salt(722)

AT3G09350 heat,salt heat(61), salt(1341) heat(35), salt(1712)

AT1G01060 cold,salt salt(1762), cold(1342) salt(1578), cold(298)

AT2G17840 cold,salt salt(120), cold(247) salt(279), cold(34)

AT2G19450 cold,salt salt(1201), cold(86) salt(700), cold(162)

AT2G38470 cold,salt salt(234), cold(4958) salt(142), cold(3504)

AT2G42540 cold,salt salt(257), cold(79) salt(538), cold(23)

AT2G46830 cold,salt salt(506), cold(267) salt(338), cold(31)

AT2G47180 cold,salt salt(842), cold(500) salt(722), cold(1642)

AT3G23830 cold,salt salt(2516), cold(3530) salt(1590), cold(2493)

AT3G48360 cold,salt salt(1007), cold(1968) salt(111), cold(447)

AT5G23860 cold,salt salt(1280), cold(320) salt(2527), cold(449)

AT5G52300 cold,salt salt(43), cold(2982) salt(38), cold(1327)

AT5G52310 cold,salt salt(10), cold(333) salt(6), cold(4)

AT5G58670 cold,salt salt(291), cold(2148) salt(634), cold(1284)

AT4G02380 cold,drought drought(1013), cold(416) drought(136), cold(278)

To investigate that StressGenePred excludes genes that respond to more than one stress, 21 genes known to respond to more than one stress are collected. Among the 21
genes, 13 genes rank lower in the result of StressGenePred than Fisher method (Table 3)

plastid protein translocation [19]. HSP70b may involve a
protein accumulation in the cytosol [20] and inducible
by heat shock, not by low temperature [21]. HSP101
is a member of the Hsp100/ClpB family of proteins, is
thought to be involved in disaggregation of misfolded
proteins [22]. HSP101 protects protein translation fac-
tors during heat stress [23]. HSP17.6 is induced by heat
and osmotic stress, and overexpression of AtHSP17.6A
increase salt and drought tolerance in Arabidopsis [24].
Hsp17.6CII is a peroxisome-localized catalase chaperone
[23]. Also, HSP15.7 is inducible by heat shock and high
light, detected in peroxisome [25]. Interestingly, both the
chloroplast-located genes HSP21 and mitochondrial heat
shock proteins such as AtHSP23.6 and MTHSC70-2 were
identified.

Biological function of cold stress-responsive genes
For cold stress, our model predicted many genes involved
in plasma membrane fluidity and cell wall rigidity. ADS2
gene adjusts the composition of membrane lipids, and
confer chilling and freezing tolerance in Arabidopsis [26].
AtGolS3 codes galactinol synthase 3 which is only induced
by cold stress and target of DREB1A [27]. FP6 is farnesy-
lated protein 6, interacts with ACBP2, and the transgenic

plants showed overexpression had Cd(II) tolerance [28].
FRO is an iron chelate reductase, and FRO3 is predicted to
involve in iron metabolism and iron reduction in the root
[29].

Biological function of salt stress-responsive genes
For salt stress, our model identified ABI2, ABF1, HAI1,
HAI2, LEA7, AtLEA4-5, NAC019, NAC047, ATD18,
RAP2.6, CYP707A1, CYP94B3, AtMYB74, ALDH7B4 and
ALDH2B7 genes. In salt stress, many genes of down-
stream signal transduction or possibly related with ABA
such as ABI2, ABF1, HAI1 and HAI2, late embryogene-
sis abundant proteins like LEA7 and AtLEA4-5. ABI2 is a
protein phosphatase 2C, interacts with SOS2 and inhibits
SOS2 activity [30]. ABI2 involved in ABA-mediated tran-
scription of chloroplast genes and link nitrate uptake
and utilization [31]. ABF1 regulates the induction of
DREB2A [17] and is necessary for seedling establish-
ment during winter. Expression of ABF1 is induced by
cold, heat, and ABA [32]. HAI1 has roles in decreasing
the low water potential signaling that controls proline
and osmoregulatory solute accumulation [33]. HAI1 is
involved in feedback regulation of ABA signaling and
HAI2 is a positive regulator of ABA and related to
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Fig. 6 Visualization of gene expression for multiple stress associated genes. Genes that were investigated to be responsive to multiple stresses. In
the visualization results, these genes responded to multiple stresses and were not suitable for biomarker genes of a single stress

cell signaling mediated by ABA [34]. Late embryoge-
nesis abundant proteins like LEA7 could protect the
plasma membrane or organellar membrane. Its activity
occurs at cytosol exposed side of the membrane [35].
AtLEA4-5 is a member of small, hydrophilic protein
group, showing high expression levels in response hyper-
osmotic, drought, and ABA treatment [36]. NAC is a
water stress-responsive transcription factor. NAC019 has
ABRE-like motifs, and the motifs could induce expres-
sion in response to stress. NAC019 promoter interacts
with a key mediator of ABA expression, ABI4, AP2 family
transcription factors [37]. ATD18, also known as RAB18,
is dehydrin family protein and required for ABA signal
transduction. ATD18 expression is repressed by ethylene
treatment [38]. RAP2.6 is induced by salt and osmotic
stress. RAP2.6 promoter contains ABRE, DRE, MYBR,
W-box, RAVbox, so seems like it may be an essential inter-
section in biotic and abiotic signaling [39]. CYP707A1 is
a member of cytochrome P450 CYP707A family encoding
ABA-8’-hydroxylases. CYP707As are working as structure

modifiers of metabolites responsive to the abiotic stress,
exogenous ABA treatment, and dehydration [40].

Biological function of drought stress-responsive genes
For drought stress, our model predicted many of early
response genes against water stress. HIS1-3 has histone
H1 globular domain and is expressed by dehydration and
ABA [41]. SAUR63 is a member of early auxin-responsive
genes family, promoting organ elongation by auxin stimu-
lation in Arabidopsis [42]. AGL19 is expressed by a short-
day photoperiod and vernalization [43]. Gamma-VPE is
a type of vegetative VPE and induced during senescence,
wounding, and pathogen infection [44]. Gamma-VPE has
a cysteine protease activity and may be involved in plant
hypersensitive cell death [41]. GOLS2 increase galacti-
nol biosynthesis and improve oxidative stress tolerance.
This gene regulated by HsfA3 [45]. AtGolS2-expressing
transgenics displayed significantly improved drought tol-
erance [46]. MEE3 (Maternal Effect Embryo arrest 3) is a
subfamily of single-MYB transcription factor and related
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to regulation of early photomorphogenesis [47]. BRS1 is
involved in brassinosteroid signaling pathway. This gene
was expressed strongly in the root and related to plant
root development [48]. BRS1 gene encodes a serine car-
boxypeptidase II-like protein, secreted and active serine
carboxypeptidase [49].

Stress responsive transcription factors
We examined genes that change expression levels with
respect to temperature stress. Some of these genes were
transcription factors, and they did not appear for other
type stress because our predictive model predicted genes
specifically associated with specific stresses. But what
we can observe is that TFs, such as ARF, ERF, bZIP,
which are involved in plant hormonal reactions, can
be activated at both high and low temperatures when
there are temperature-related stresses. Our model pre-
dicted NAD4L and NAD5 (NADH dehydrogenase sub-
units 4L and 5) and several unknown genes encoded in
the mitochondrial genome that only affected heat stress.
Some genes in mitochondria may be involved in the
initial transcriptional response when under heat stress.
In the case of salt and drought stress, we predicted
two TF genes, HD-ZIP (ATHB-5; AT2G468) and NAC
(ANAC019: AT1G5289), which are associated with both
stresses. These two genes are likely to respond early to
water-related stress. NAC domain TF is prominent in
salt stress, but not drought stress. We observed SAURs
(small auxin upregulated RNA) in drought stress, which
means that it is a small RNA that is actively involved
in plant physiological regulation during long-term water
deficiency.

Diversity of responses to multiple stresses
In this study, we selected four different types of stress to
find and classify the affected genes. The effects of these
environmental stresses are overwhelming, but they do
not define specific parts of metabolism and physiological
consequences. The characteristics of the four stresses we
studied have in common with the physiological response
associated with water. Although they react differently
depending on the signaling pathways of each stress, they
do not have complete separation because of the common-
alities associated with using water. Many of the biomarker
genes we have found have been shown to respond to mul-
tiple stresses, and have shown a variety of phenotypes for
different stresses in plants that have been transfected with
mutations or recombinant genes. The APX gene is a gene
that responds to all four stresses, and other genes such as
AREB, AtRIP, DREB, Gols and MAPs are well known as
genes that respond to multiple stresses. In this study, the
genes involved in the specific stresses we predicted were
either identical in other stresses or related to multiple
complex stresses.

Conclusion
This study presented StressGenePred, a method of ana-
lyzing a set of time-series transcriptome data for multiple
types of stress. StressGenePred consists of twin classifica-
tion models to achieve two analytic goals. The biomarker
gene discovery model aims to discover genes that respond
to specific stresses. The goal of the stress type prediction
model is to classify samples into four types of stress, heat,
cold, drought, and salt. The key problem in this study is
to train the StressGenePred model from high-dimension
(approximately 20,000 genes) and low-sample-size data
(138 sample data in the study). Analysis of high-dimension
and low-sample-size data is a difficult computational
problem that many researchers are studying.

In order to be trained with a small number of data,
StressGenePred is designed to use a simplified archi-
tecture (only one logical layer) with a small number of
parameters. StressGenePred is also designed so that twin
classification models share the same logical layer and
its parameters. In twin classification models, the logical
layer is used symmetrically with respect to input and out-
put. For example, the input and output in the biomarker
gene discovery model are stress and genes, respectively,
and the stress type prediction model is vice versa. When
the logical layer is shared by both classification models,
the parameters of the logical layer are trained redun-
dantly in both models, reducing the number of data
required.

In experiments using Arabidopsis stressed gene expres-
sion data, StressGenePred detected known stress-related
genes at a higher rank compared to Fisher’s method.
StressGenePred showed better performance than ran-
dom forest and support vector machine in stress type
prediction.
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