154 research outputs found

    Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy

    Get PDF
    The dependence of band intensities in the Raman spectrum of individual single-crystal ruthenium dioxide (RuO2) nanowires on the angle between the plane of polarization of the exciting (and collected) light and the long axis of the nanowire, is shown to be a simple, complementary technique to high resolution transmission electron microscopy (HRTEM) for determining nanowire growth direction. We show that excellent agreement exists between what is observed and what is predicted for the polarization angle dependence of the intensities of the nanowires' E-g (525 cm(-1)) and the B-2g (714 cm(-1)) Raman bands, only by assuming that the nanowires grow along the (001) crystallographic direction, as confirmed by HRTEM.open9

    Quantum computation of stopping power for inertial fusion target design

    Full text link
    Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it -- one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450

    APOE-ε4 synergizes with sleep disruption to accelerate Aβ deposition and Aβ-associated tau seeding and spreading

    Get PDF
    Alzheimer\u27s disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aβ deposition and Aβ plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aβ deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD

    The Operator Product Expansion of N=4 SYM and the 4-point Functions of Supergravity

    Get PDF
    We give a detailed Operator Product Expansion interpretation of the results for conformal 4-point functions computed from supergravity through the AdS/CFT duality. We show that for an arbitrary scalar exchange in AdS(d+1) all the power-singular terms in the direct channel limit (and only these terms) exactly match the corresponding contributions to the OPE of the operator dual to the exchanged bulk field and of its conformal descendents. The leading logarithmic singularities in the 4-point functions of protected N=4 super-Yang Mills operators (computed from IIB supergravity on AdS(5) X S(5) are interpreted as O(1/N^2) renormalization effects of the double-trace products appearing in the OPE. Applied to the 4-point functions of the operators Ophi ~ tr F^2 + ... and Oc ~ tr FF~ + ..., this analysis leads to the prediction that the double-trace composites [Ophi Oc] and [Ophi Ophi - Oc Oc] have anomalous dimension -16/N^2 in the large N, large g_{YM}^2 N limit. We describe a geometric picture of the OPE in the dual gravitational theory, for both the power-singular terms and the leading logarithms. We comment on several possible extensions of our results.Comment: 42 page

    Attacking Recommender Systems with Augmented User Profiles

    Full text link
    Recommendation Systems (RS) have become an essential part of many online services. Due to its pivotal role in guiding customers towards purchasing, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study the shilling attack: a subsistent and profitable attack where an adversarial party injects a number of user profiles to promote or demote a target item. Conventional shilling attack models are based on simple heuristics that can be easily detected, or directly adopt adversarial attack methods without a special design for RS. Moreover, the study on the attack impact on deep learning based RS is missing in the literature, making the effects of shilling attack against real RS doubtful. We present a novel Augmented Shilling Attack framework (AUSH) and implement it with the idea of Generative Adversarial Network. AUSH is capable of tailoring attacks against RS according to budget and complex attack goals, such as targeting a specific user group. We experimentally show that the attack impact of AUSH is noticeable on a wide range of RS including both classic and modern deep learning based RS, while it is virtually undetectable by the state-of-the-art attack detection model.Comment: CIKM 2020. 10 pages, 2 figure

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Rapid ASKAP Continuum Survey I: Design and First Results

    Full text link
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 7001800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with 15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41+41^\circ made over a 288 MHz band centred at 887.5 MHz.Comment: 24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuu

    Genome Sequences of Streptomyces Phages Amela and Verse

    Get PDF
    This article describes Amela and Verse, two Streptomyces phages isolated by enrichment on Streptomyces venezuelae (ATCC 10712) from two different soil samples
    corecore