1,124 research outputs found

    Body Mass Index–Mortality Relationship in Severe Hypoglycemic Patients With Type 2 Diabetes

    Get PDF
    AbstractBackgroundHypoglycemia is associated with a higher risk of death. This study analyzed various body mass index (BMI) categories and mortalities of severe hypoglycemic patients with type 2 diabetes mellitus (DM) in a hospital emergency department.MethodsThe study included 566 adults with type 2 diabetes who were admitted to 1 medical center in Taiwan between 2008 and 2009 with a diagnosis of severe hypoglycemia. Mortality data, demographics, clinical characteristics and the Charlson’s Comorbidity Index were obtained from the electronic medical records. Patients were stratified into 4 study groups as determined by the National institute of Health (NiH) and World Health organization classification for BMi, and the demographics were compared using the analysis of variance and χ2 test. Kaplan-Meier’s analysis and the Cox proportional-hazards regression model were used for mortality, and adjusted hazard ratios were adjusted for each BMi category among participants.ResultsAfter controlling for other possible confounding variables, BMI <18.5 kg/m2 was independently associated with low survival rates in the Cox regression analysis of the entire cohort of type 2 DM patients who encountered a hypoglycemic event. Compared to patients with normal BMI, the mortality risk was higher (adjusted hazard ratios = 4.9; 95% confidence interval [CI] = 2.4-9.9) in underweight patients. Infection-related causes of death were observed in 101 cases (69.2%) and were the leading cause of death.ConclusionsAn independent association was observed between BMI less than 18.5 kg/m2 and mortality among type 2 DM patient with severe hypoglycemic episode. Deaths were predominantly infection related

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Reduced Health-Related Quality of Life in Body Constitutions of Yin-Xu, and Yang-Xu, Stasis in Patients with Type 2 Diabetes: Taichung Diabetic Body Constitution Study

    Get PDF
    Aim. To evaluate how health-related quality of life (HRQOL) and traditional Chinese medicine (TCM) constitutions of Yin-Xu, Yang-Xu, and Stasis are related in type 2 diabetes patients. Method. Seven hundred and five subjects were recruited in 2010 for this study from a Diabetes Shared Care Network in Taiwan. Generic and disease-specific HRQOL were assessed by the short form 36 (SF-36) and the diabetes impact measurement scale (DIMS). Constitutions of Yin-Xu, Yang-Xu, and Stasis were then assessed by the body constitution questionnaire (BCQ), a questionnaire consisting of 44 items that evaluate the physiological state based on subjective symptoms and signs. Results. Estimated effects of the Ying-Xu and Stasis on all scales of the SF-36 were significantly negative, while estimated effects of the Yang-Xu on all scales (except for SF, RE, MH, and MCS) were significantly negative. For DIMS, the estimated effects of the Ying-Xu and Stasis on all scales were significantly negative except for Stasis on well-being, while Yang-Xu has a significantly negative effect only on symptoms. Conclusions. This study demonstrates that TCM constitutions of Yin-Xu, Yang-Xu, and Stasis are closely related to a reduction in HRQOL. These findings support the need for further research into the impact of intervention for TCM constitutions on HRQOL in patients with type 2 diabetes

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P &lt; 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Alterations of Renal Epithelial Glucose and Uric Acid Transporters in Fructose Induced Metabolic Syndrome

    Get PDF
    Background/Aims: Hyperglycemia and hyperuricemia are two major disorders of Metabolic syndrome. Kidney plays a crucial role in maintaining the homeostasis of uric acid and glucose. The aim of the study was to examine the changes of renal glucose and uric acid transporters in animals with metabolic syndrome. Methods: Sprague-Dawley rats were fed with high fructose diet (60%) for 3 months (FR-3) and 5 months (FR-5). At the end study, serum and urine biochemical data were compared. Gene expression and protein abundance of renal GLUT1, GLUT2, GLUT9, SGLT1, SGLT2, UAT and URAT1 was investigated by using RT-PCR and immunohistochemical staining. Results: Metabolic syndrome was induced by high-fructose diet. Systolic blood pressure and proteinuria was significantly increased in FR-5 animals. In kidney tissue, gene expression of GLUT2 and SGLT2 increased significantly in a time dependent manner. GLUT9, SGLT1 and UAT were also significantly upregulated in FR-5. Immunohistochemical study showed a significant increase of SGLT1 in both FR-3 (413.5 ± 88.3% of control, p&#x3c; 0.001) and FR-5 (677.6 ± 26.5% of control, p&#x3c; 0.001). Also, SGLT2 protein was increased in both FR-3 (643.1 ± 41.3% of control, p&#x3c; 0.001) and FR-5 (563.3 ± 21.7% of control, p&#x3c; 0.001). Fructose rich food also induced increase of UAT by nearly 5-fold in both FR-3 and FR-5 (both p&#x3c; 0.05) and more than 3-fold of GLUT-9 in FR-3 and FR-5 (both p&#x3c; 0.05). Conclusion: Long term high fructose diet induced metabolic syndrome with increased blood pressure and proteinuria in rats. Metabolic syndrome was associated with dual increase in renal glucose and uric acid transporters, including SGLT1, SGLT2, GLUT2, GLUT9 and UAT
    corecore