2,254 research outputs found
Imaging Complex Structure in Shallow Seismic-reflection Data Using Prestack Depth Migration
Prestack depth migration (PSDM) analysis has the potential to significantly improve the accuracy of both shallow seismic reflection images and the measured velocity distributions. In a study designed to image faults in the Alvord Basin, Oregon, at depths from 25–1000 m, PSDM produced a detailed reflection image over the full target depth range. In contrast, poststack time migration produced significant migration artifacts in the upper 100 m that obscured reflection events and limited the structural interpretation in the shallow section. Additionally, an abrupt increase from ~2500 to \u3e3000 m/s in the PSDM velocity model constrained the interpretation of the transition from sedimentary basin fill to basement volcanic rocks. PSDM analysis revealed a complex extensional history with at least two distinct phases of basin growth and a midbasin basement high that forms the division between two major basin compartments
Director Agent Intervention Strategies for Interactive Narrative Environments
Abstract. Interactive narrative environments offer significant potential for creating engaging narrative experiences. Increasingly, applications in education, training, and entertainment are leveraging narrative to create rich interactive experiences in virtual storyworlds. A key challenge posed by these environments is building an effective model of the intervention strategies of director agents that craft customized story experiences for users. Identifying factors that contribute to determining when the next director agent decision should occur is critically important in optimizing narrative experiences. In this work, a dynamic Bayesian network framework was designed to model director agent intervention strategies. To create empirically informed models of director agent intervention decisions, we conducted a Wizard-of-Oz (WOZ) data collection with an interactive narrative-centered learning environment. Using the collected data, dynamic Bayesian network and naïve Bayes models were learned and compared. The performance of the resulting models was evaluated with respect to classification accuracy and produced promising results
A complete view of galaxy evolution: panchromatic luminosity functions and the generation of metals
When and how did galaxies form and their metals accumulate? Over the last
decade, this has moved from an archeological question to a live investigation:
there is now a broad picture of the evolution of galaxies in dark matter halos:
their masses, stars, metals and supermassive blackholes. Galaxies have been
found and studied in which these formation processes are taking place most
vigorously, all the way back in cosmic time to when the intergalactic medium
(IGM) was still largely neutral. However, the details of how and why the
interstellar medium (ISM) in distant galaxies cools, is processed, recycled and
enriched in metals by stars, and fuels active galactic nuclei (AGNs) remain
uncertain. In particular, the cooling of gas to fuel star formation, and the
chemistry and physics of the most intensely active regions is hidden from view
at optical wavelengths, but can be seen and diagnosed at mid- & far-infrared
(IR) wavelengths. Rest-frame IR observations are important first to identify
the most luminous, interesting and important galaxies, secondly to quantify
accurately their total luminosity, and finally to use spectroscopy to trace the
conditions in the molecular and atomic gas out of which stars form. In order to
map out these processes over the full range of environments and large-scale
structures found in the universe - from the densest clusters of galaxies to the
emptiest voids - we require tools for deep, large area surveys, of millions of
galaxies out to z~5, and for detailed follow-up spectroscopy. The necessary
tools can be realized technically. Here, we outline the requirements for
gathering the crucial information to build, validate and challenge models of
galaxy evolution.Comment: A whitepaper submitted on 15th February 2009 in response to the call
from the Astro2010 panel: astro2010.org; uploaded as an 8-page pdf fil
p16INK4A expression is frequently increased in periorbital and ocular squamous lesions
Backgroundp16 expression is a well established biomarker of cervical dysplasia and carcinoma arising from high risk human papilloma virus infection. Increased p16 expression is also seen in squamous neoplasms arising at other sites, including head, neck, and oropharyngeal tract. Squamous lesions are also frequently encountered at ocular surface and peri-orbital skin sites, but the prevalence of increased p16 expression in these lesions has been poorly studied.MethodsWe retrospectively surveyed 13 ocular surface and 16 orbital squamous lesions biopsied at UC San Diego Healthcare System and VA San Diego Healthcare System for p16 expression by immunohistochemistry. These cases included ocular surface lesions with diagnoses of conjunctival intraepithelial neoplasm (CIN) and squamous cell carcinoma in situ. Peri-orbital eyelid biopsies included lesions with diagnoses of SCCis and invasive squamous cell carcinoma. We performed multivariate logistic regression, followed by student's T-test or Fisher's exact test to determine if there were statistically significant associations between p16 immunoreactivity and patient age, gender, diagnosis, and ethnicity. Statistical significance was defined as p < 0.05.ResultsWe found an unexpectedly large prevalence of strong nuclear and cytoplasmic p16 immunoreactivity in our cases. Almost all of the ocular surface squamous lesions were diffusely positive for p16 expression (12/13). All of the periorbital lesions showed diffuse p16 immunoreactivity (16/16). Altogether, 28/29 lesions tested showed strong and diffuse p16 expression. We found no statistically significant correlation between p16 expression and patient age, gender, ethnicity, or diagnosis. In 6 of the peri-orbital biopsies, we had sufficient tissue to assess high-risk HPV expression by in situ hybridization. Interestingly, all of these cases were negative for HPV, despite strong p16 expression.ConclusionStrong p16 expression was observed in virtually all of the ocular surface and peri-orbital squamous neoplasms in our study. The relationship between p16 expression and HPV infection in ocular surface and peri-orbital sites requires further investigation
Frequency responses of age-structured populations: Pacific salmon as an example
Increasing evidence of the effects of changing climate on physical ocean
conditions and long-term changes in fish populations adds to the need to
understand the effects of stochastic forcing on marine populations. Cohort
resonance is of particular interest because it involves selective sensitivity
to specific time scales of environmental variability, including that of mean
age of reproduction, and, more importantly, very low frequencies (i.e.,
trends). We present an age-structured model for two Pacific salmon species with
environmental variability in survival rate and in individual growth rate, hence
spawning age distribution. We use computed frequency response curves and
analysis of the linearized dynamics to obtain two main results. First, the
frequency response of the population is affected by the life history stage at
which variability affects the population; varying growth rate tends to excite
periodic resonance in age structure, while varying survival tends to excite
low-frequency fluctuation with more effect on total population size. Second,
decreasing adult survival strengthens the cohort resonance effect at all
frequencies, a finding that addresses the question of how fishing and climate
change will interact.Comment: much revised: the version accepted by Theoretical Population Biolog
Recommended from our members
Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia
SUMMARY Melanocortin 4 receptors (Mc4rs) are expressed by extra-hypothalamic neurons including cholinergic autonomic pre-ganglionic neurons. However, whether Mc4rs in these neurons are required to control energy and glucose homeostasis is unclear. Here we report that Mc4rs in sympathetic, but not parasympathetic, pre-ganglionic neurons are required to regulate energy expenditure and body weight including brown and white adipose tissue thermogenic responses to diet and cold exposure. In addition, deletion of Mc4rs in both sympathetic and parasympathetic cholinergic neurons impairs glucose homeostasis
Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions
Reactive oxygen species (ROS) are produced during seed desiccation, germination, and ageing, leading to cellular damage and seed deterioration and, therefore, decreased seed longevity. The effects of simultaneous over-expression of two antioxidant enzymes on seed longevity and seed germination under stressful conditions were investigated. Transgenic tobacco simultaneously over-expressing the Cu/Zn-superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes in plastids showed normal growth and seed development. Furthermore, the transgenic seeds displayed increased CuZnSOD and APX enzymatic activities during seed development and maintained antioxidant enzymatic activity after two years of dried storage at room temperature. The two-year stored non-transgenic seeds (aged NT seeds) had higher levels of ion leakage than the two-year stored transgenic seeds (aged CA seeds), indicating membrane damage caused by ROS was more severe in the aged NT seeds than the aged CA seeds. The aged CA seeds decreased germination rates as compared to newly harvested transgenic and non-transgenic seeds. The aged CA seeds, however, significantly increased germination rates under various abiotic stress conditions as compared to aged NT seeds. These data strongly suggest that simultaneous over-expression of the CuZnSOD and APX genes in plastids improves seed longevity and germination under various environmental stress conditions by attenuating the effects of oxidative stress produced by elongated storage conditions and harsh environmental stresses
The MINERA Data Acquisition System and Infrastructure
MINERA (Main INjector ExpeRiment -A) is a new few-GeV neutrino
cross section experiment that began taking data in the FNAL NuMI (Fermi
National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in
March of 2010. MINERA employs a fine-grained scintillator detector capable
of complete kinematic characterization of neutrino interactions. This paper
describes the MINERA data acquisition system (DAQ) including the read-out
electronics, software, and computing architecture.Comment: 34 pages, 16 figure
The velocity dispersion and mass function of the outer halo globular cluster Palomar 4
We obtained precise line-of-sight radial velocities of 23 member stars of the
remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution
Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass
function of the cluster down to a limiting magnitude of V~28 mag using archival
HST/WFPC2 imaging. We derived the cluster's surface brightness profile based on
the WFPC2 data and on broad-band imaging with the Low-Resolution Imaging
Spectrometer (LRIS) at the Keck II telescope. We find a mean cluster velocity
of 72.55+/-0.22 km/s and a velocity dispersion of 0.87+/-0.18 km/s. The global
mass function of the cluster, in the mass range 0.55<=M<=0.85 M_solar, is
shallower than a Kroupa mass function and the cluster is significantly depleted
in low-mass stars in its center compared to its outskirts. Since the relaxation
time of Pal 4 is of the order of a Hubble time, this points to primordial mass
segregation in this cluster. Extrapolating the measured mass function towards
lower-mass stars and including the contribution of compact remnants, we derive
a total cluster mass of 29800 M_solar. For this mass, the measured velocity
dispersion is consistent with the expectations of Newtonian dynamics and below
the prediction of Modified Newtonian Dynamics (MOND). Pal 4 adds to the growing
body of evidence that the dynamics of star clusters in the outer Galactic halo
can hardly be explained by MOND.Comment: 17 pages, accepted for publication in MNRAS; Fig. 8 surface
brightness/density data at github.com/matthiasjfrank/pal4_surface_brightnes
- …