29 research outputs found

    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females

    Get PDF
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders

    Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome

    Get PDF
    Background: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. Methods: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. Results: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. Conclusions: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation

    A Bayesian Framework for Inference of the Genotype–Phenotype Map for Segregating Populations

    No full text
    Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus, computational methods that generate causal hypotheses can help to prioritize targets for experimental intervention. We propose a Bayesian statistical method to infer networks of causal relationships among genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically randomized populations. Causal relationships between network variables are described with hierarchical regression models. Prior distributions on the network structure enforce graph sparsity and have the potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is used to search across the model space and sample highly probable networks. The result is an ensemble of networks that provide a measure of confidence in the estimated network topology. These networks can be used to make predictions of system-wide response to perturbations. We applied our method to kidney gene expression data from an MRL/MpJ × SM/J intercross population and predicted a previously uncharacterized feedback loop in the local renin–angiotensin system

    Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice.

    No full text
    To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a toolbox of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits

    A major X-linked locus affects kidney function in mice.

    No full text
    Chronic kidney disease is a common disease with increasing prevalence in the western population. One common reason for chronic kidney failure is diabetic nephropathy. Diabetic nephropathy and hyperglycemia are characteristics of the mouse inbred strain KK/HlJ, which is predominantly used as a model for metabolic syndrome due to its inherited glucose intolerance and insulin resistance. We used KK/HlJ, an albuminuria-sensitive strain, and C57BL/6J, an albuminuria-resistant strain, to perform a quantitative trait locus (QTL) cross to identify the genetic basis for chronic kidney failure. Albumin-creatinine ratio (ACR) was measured in 130 F2 male offspring. One significant QTL was identified on chromosome (Chr) X and four suggestive QTL were found on Chrs 6, 7, 12, and 13. Narrowing of the QTL region was focused on the X-linked QTL and performed by incorporating genotype and expression analyses for genes located in the region. From the 485 genes identified in the X-linked QTL region, a few candidate genes were identified using a combination of bioinformatic evidence based on genomic comparison of the parental strains and known function in urine homeostasis. Finally, this study demonstrates the significance of the X chromosome in the genetic determination of albuminuria

    Uncovering Genes and Regulatory Pathways Related to Urinary Albumin Excretion

    No full text
    Identifying the genes underlying quantitative trait loci (QTL) for disease is difficult, mainly because of the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals, test candidate genes, and define pathways affected by these QTL. In this study, we mapped three significant QTL and one suggestive QTL for an increased albumin-to-creatinine ratio on chromosomes (Chrs) 1, 4, 15, and 17, respectively, in a cross between the inbred MRL/MpJ and SM/J strains of mice. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL, including the glycan degradation, leukocyte migration, and antigen-presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease

    Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross.

    No full text
    A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification

    Sequence variation at multiple loci influences red cell hemoglobin concentration

    No full text
    A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci analyses to identify chromosome regions harboring genes influencing red cell hemoglobin concentration using the cell hemoglobin concentration mean (CHCM), a directly measured parameter analogous to the mean cell hemoglobin concentration. Fourteen significant loci (gene symbols Chcmq1-Chcmq14) were detected. Seven of these influenced CHCM in a sex-specific fashion, and 2 showed significant interactive effects (epistasis). For quantitative trait locus/loci detected in multiple crosses, confidence intervals were narrowed using statistical and bioinformatic approaches. Two strong candidate genes emerged and were further analyzed: adult β-globin (Hbb) for Chcmq3 on Chr 7, and transferrin (Trf) for Chcmq2 on Chr 9. High and low allele parental strains in crosses detecting Chcmq3 segregate 100% with the known ancestral haplotype blocks, hemoglobin (Hb) diffuse (Hbbd) and Hb single (Hbbs), respectively. Hbbd consists of nonidentical major and minor polypeptides and exhibits an increased positive charge relative to Hbbs due to the net loss of 2 negative residues in the Hbbdminor polypeptide, resulting in a pI of 7.85 versus 7.13. Thus, as shown in human erythrocytes, positively charged Hbs are associated with cell dehydration and increased CHCM in mouse erythrocytes

    CRIPT exonic deletion and a novel missense mutation in a female with short stature, dysmorphic features, microcephaly, and pigmentary abnormalities.

    No full text
    Mutations in CRIPT encoding cysteine-rich PDZ domain-binding protein are rare, and to date have been reported in only two patients with autosomal recessive primordial dwarfism and distinctive facies. Here, we describe a female with biallelic mutations in CRIPT presenting with postnatal growth retardation, global developmental delay, and dysmorphic features including frontal bossing, high forehead, and sparse hair and eyebrows. Additional clinical features included high myopia, admixed hyper- and hypopigmented macules primarily on the face, arms, and legs, and syndactyly of 4-5 toes bilaterally. Using whole exome sequencing (WES) and chromosomal microarray analysis (CMA), we detected a c.8G\u3eA (p.C3Y) missense variant in exon 1 of the CRIPT gene inherited from the mother and a 1,331 bp deletion encompassing exon 1, inherited from the father. The c.8G\u3eA (p.C3Y) missense variant in CRIPT was apparently homozygous in the proband due to the exon 1 deletion. Our findings illustrate the clinical utility of combining WES with copy number variant (CNV) analysis to provide a molecular diagnosis to patients with rare Mendelian disorders. Our findings also illustrate the clinical spectrum of CRIPT related mutations. © 2016 Wiley Periodicals, Inc. Am J Med Genet 2016 Aug; 170(8):2206-1
    corecore