115 research outputs found

    Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population

    Full text link
    [EN] We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88-100%) and seedling mortality was low (0-12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. © 2011 Macmillan Publishers Limited All rights reserved. Guardar / Salir Siguiente >This work has been partially supported by Grant PPI-00-04 from the Polytechnic University of Valencia (Spain). We thank B Fady and E Klein as well as two anonymous reviewers for their helpful comments on a previous version of the paper. We acknowledge B Jouaud, W Brunetto, F Jean and H Picot for seed collection and processing and laboratory assistance, as well as P Brahic and staff from the Experimental Nursery of Aix-Les Milles for nursery cares.Ferriol Molina, M.; Pichot, C.; Lefevre, F. (2011). Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity. 106(1):146-157. https://doi.org/10.1038/hdy.2010.451461571061Barret SH, Eckert CG (1990). Variation and evolution of mating systems in seed plants. In: Kawano S (ed). Biological Approaches and Evolutionary Trends in Plants. Academic Press: London. pp 230–254.Benton TG, Plaistow SJ, Coulson TN (2006). Complex population dynamics and complex causation: devils, details and demography. Proc R Soc B Biol Sci 273: 1173–1181.Bower AD, Aitken SN (2007). Mating system and inbreeding depression in whitebark pine (Pinus albicaulis Engelm.). Tree Genet Genomes 3: 379–388.Byers DL, Waller DM (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30: 479–513.Cointat M (1996). Le roman du cèdre. Revue Forestière Française 48: 503–526.Collevatti RG, Grattapaglia D, Duvall J (2001). High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 86: 60–67.Cottrell JE, White IMS (1995). The use of isozyme genetic markers to estimate the rate of outcrossing in a Sitka pruce (Picea sitchensis (Bong.) Carr.) seed orchard in Scotland. New Forests 10: 111–122.Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE (2006). Putting evolutionary biology back in the ecological theatre: a demographic framework mapping genes to communities. Evol Ecol Res 8: 1155–1171.Durel CE, Bertin P, Kremer A (1996). Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor Appl Genet 92: 347–356.Eriksson E (2006). Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 30: 848–854.Fady B, Lefèvre F, Reynaud M, Vendramin GG, Bou Dagher-Karrat M, Anzidei M et al. (2003). Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107: 1132–1138.Farris MA, Mitton JB (1984). Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154.Favre-Duchartre M (1970). Des Ovules Aux Graines. Monographie 8. Masson et Cie.: Paris.Franklin EC (1969). Inbreeding Depression in Metrical Traits of Loblolly Pine (Pinus taeda L.) as a Result of Self-pollination. North Carolina State University: Raleigh, NC. Technical report No 40, School of Forest Resources.Gregorius HR, Ziehe M, Ross MD (1987). Selection caused by self-fertilization I. Four measures of self-fertilization and their effects on fitness. Theor Popul Biol 31: 91–115.Hamrick JL, Godt MJ (1989). Allozyme diversity in plant species. In: Brown AHD, Al Kahler MC, Weir BS (eds). Plant Population Genetics, Breeding, and Genetic Resources. Sinauer: Sunderland, MA. pp 43–63.Holsinger KE (1991). Mass-action models of plant mating systems—the evolutionary stability of mixed mating systems. Am Nat 138: 606–622.Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70.Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006). Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol Ecol 15: 851–861.Kärkkäinen K, Savolainen O (1993). The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71: 160–166.Keller LF, Waller DM (2002). Inbreeding effects in wild populations. Trends Ecol Evol 17: 230–241.Klein EK, Lavigne C, Gouyon PH (2006). Mixing of propagules from discrete sources at long distance: comparing an exponential tail to an exponential. BMC Ecol 6: 3.Knowles P, Furnier GR, Aleksiuk MK, Perry DJ (1987). Significant levels of self-fertilization in natural populations of tamarack. Can J Bot 65: 1087–1091.Koelewijn HP, Koski V, Savolainen O (1999). Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.). Evolution 53: 758–768.Kremer A (1994). Genetic diversity and phenotypic variability of forest trees. Genet Sel Evol 26: s105–s123.Krouchi F, Derridj A, Lefèvre F (2004). Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. For Ecol Manage 197: 181–189.Lande R (1988). Genetics and demography in biological conservation. Science 241: 1455–1460.Ledig FT (1986). Heterozygosity, heterosis, and fitness in outbreeding plants. In: Soulé ME (ed). Conservation Biology: the Science of Scarcity and Diversity. Sinauer Ass: Sunderland. pp 77–104.Lee JK, Nordheim EV, Kang H (1996). Inference for lethal gene estimation with application in plants. Biometrics 52: 451–462.Lefèvre F, Fady B, Fallour-Rubio D, Ghosn D, Bariteau M (2004). Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity 93: 542–550.Marquardt PE, Epperson BK (2004). Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13: 3305–3315.Morgante M, Vendramin GG, Rossi P (1991). Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can J Bot 69: 2704–2708.Mosseler A, Major JE, Simpson JD, Daigle B, Lange K, Park YS et al. (2000). Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity. Can J Bot 78: 928–940.Naydenov KD, Tremblay FM, Alexandrov A, Fenton NJ (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis : provenance tests. Biochem Syst Ecol 33: 1226–1245.Neale DB, Adams WT (1985). The mating system in natural and shelterwood stands of Douglas-fir. Theor Appl Genet 71: 201–207.Notivol E, Garcia-Gil MR, Alia R, Savolainen O (2007). Genetic variation of growth rhythm traits in the limits of a latitudinal cline in Scots pine. Can J For Res 37: 540–551.O’Connell LM, Russell J, Ritland K (2004). Fine-scale estimation of outcrossing in western redcedar with microsatellite assay of bulked DNA. Heredity 93: 443–449.Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001). Genetic variation at chloroplast microsatellites (CpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102: 733–740.Parraguirre-Lezama C, Vargas-Hernández JJ, Ramirez-Vallejo P, Ramirez Herrera C (2004). Mating system in four natural populations of Pinus greggii Engelm. Agrociencia 38: 107–119.Petit RJ, Hampe A (2006). Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37: 187–214.Pichot C, Bastien C, Courbet F, Demesure-Musch B, Dreyfus P, Fady B et al. (2006). Déterminants et conséquences de la qualité génétique des graines et semis lors de la phase initiale de régénération naturelle des peuplements forestiers. In: 6e Colloque National du BRG ; La Rochelle 2006/10/02-04. Les Actes du Bureau des Ressources Génétiques 6: 277–297.Remington DL, O’Malley DM (2000a). Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155: 337–348.Remington DL, O’Malley DM (2000b). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54: 1580–1589.Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B (2008). Life at the margin: the mating system of Mediterranean conifers. Web Ecol 8: 94–102.Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002). Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11: 869–877.Ritland K, El-Kassaby YA (1985). The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theor Appl Genet 71: 375–384.Ritland K, Travis S (2004). Inferences involving individual coefficients of relatedness and inbreeding in natural populations of Abies. For Ecol Manage 197: 171–180.Robledo-Arnuncio JJ, Alia R, Gil L (2004). Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13: 2567–2577.Rouault G, Turgeon J, Candau JN, Roques A, Aderkas P (2004). Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften 91: 472–480.Savolainen O, Kärkkäinen K, Kuittinen H (1992). Estimating numbers of embryonic lethals in conifers. Heredity 69: 308–314.Scofield DG, Schultz ST (2006). Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc R Soc B Biol Sci 273: 275–282.Shaw DV, Allard RW (1982). Estimation of outcrossing rates in douglas-fir using isoenzyme markers. Theor Appl Genet 62: 113–120.Skrøppa T (1996). Diallel crosses in Picea abies. II. Performance and inbreeding depression of selfed families. For Genet 3: 69–79.Sorensen FC (1997). Effects of sib mating and wind pollination on nursery seedling size, growth components, and phenology of Douglas-fir seed-orchard progenies. Can J For Res 27: 557–566.Sorensen FC (1999). Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species. Evolution 53: 417–425.Sorensen FC (2001). Effect of population outcrossing rate on inbreeding depression in Pinus contorta var. murrayana seedlings. Scand J For Res 16: 391–403.Sorensen FC, Adams WT (1993). Self fertility and natural selfing in three Oregon Cascade populations of lodgepole pine. In: Lindgren D (ed). Pinus contorta—From Untamed Forest to Domesticated Crop. Department of Forest Genetics and Plant Physiology, Sweden University of Agricultural Science: Umea, Sweden. Report 11, pp 358–374.Sorensen FC, Miles RS (1974). Self-pollination effects on Douglas fir and ponderosa pine seeds and seedlings. Silvae Genet 23: 135–138.Sorensen FC, Miles RS (1982). Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine, and noble fir to 10 years of age. For Sci 28: 283–292.Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006). Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am J Bot 93: 1274–1280.Vendramin GG, Lelli L, Rossi P, Morgante M (1996). A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5: 595–598.White TL, Adams WT, Neale DB (2007). Forest Genetics. CABI Publisher: Cambridge, MA. pp 149–186.Wilcox MD (1983). Inbreeding depression and genetic variances estimated from self- and cross- pollinated families of Pinus radiata. Silvae Genet 32: 89–96.Williams CG (2007). Re-thinking the embryo lethal system within the Pinaceae. Can J Bot 85: 667–677.Williams CG (2008). Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytol 178: 210–222.Williams CG, Auckland LD, Reynolds MM, Leach KA (2003). Overdominant lethals as part of the conifer embryo lethal system. Heredity 91: 584–592.Wilson R (1923). Life history of Cedrus atlantica. Bot Gaz 75: 203–208.Yazdani R, Muona O, Rudin D, Szmidt AE (1985). Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For Sci 31: 430–436

    Complex evolutionary history of the Mexican stoneroller Campostoma ornatum Girard, 1856 (Actinopterygii: Cyprinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region. <it>Campostoma ornatum </it>is a freshwater fish endemic to montane and semiarid regions in northwest Mexico and southern Arizona. Its wide range of distribution and the previously observed morphological differentiation between populations in different watersheds make this species a useful model to investigate the biogeographic role of the Sierra Madre Occidental and to disentangle the actions of Pliocene tecto-volcanic processes <it>vs </it>Quaternary climatic change. Our phylogeographic study was based on DNA sequences from one mitochondrial gene (<it>cytb</it>, 1110 bp, n = 285) and two nuclear gene regions (S7 and RAG1, 1822 bp in total, n = 56 and 43, respectively) obtained from 18 to 29 localities, in addition to a morphological survey covering the entire distribution area. Such a dataset allowed us to assess whether any of the populations/lineages sampled deserve to be categorised as an evolutionarily significant unit.</p> <p>Results</p> <p>We found two morphologically and genetically well-differentiated groups within <it>C. ornatum</it>. One is located in the northern river drainages (Yaqui, Mayo, Fuerte, Sonora, Casas Grandes, Santa Clara and Conchos) and another one is found in the southern drainages (Nazas, Aguanaval and Piaxtla). The split between these two lineages took place about 3.9 Mya (CI = 2.1-5.9). Within the northern lineage, there was strong and significant inter-basin genetic differentiation and also several secondary dispersal episodes whit gene homogenization between drainages. Interestingly, three divergent mitochondrial lineages were found in sympatry in two northern localities from the Yaqui river basin.</p> <p>Conclusions</p> <p>Our results indicate that there was isolation between the northern and southern phylogroups since the Pliocene, which was related to the formation of the ancient Nazas River paleosystem, where the southern group originated. Within groups, a complex reticulate biogeographic history for <it>C. ornatum </it>populations emerges, following the taxon pulse theory and mainly related with Pliocene tecto-volcanic processes. In the northern group, several events of vicariance promoted by river or drainage isolation episodes were found, but within both groups, the phylogeographic patterns suggest the occurrence of several events of river capture and fauna interchange. The Yaqui River supports the most diverse populations of <it>C. ornatum</it>, with several events of dispersal and isolation within the basin. Based on our genetic results, we defined three ESUs within <it>C. ornatum </it>as a first attempt to promote the conservation of the evolutionary processes determining the genetic diversity of this species. They will likely be revealed as a valuable tool for freshwater conservation policies in northwest Mexico, where many environmental problems concerning the use of water have rapidly arisen in recent decades.</p

    Ecological genetics of inbreeding, outbreeding and immunocompetence in Ranid frogs

    Get PDF
    Using artificial fertilization, I crossed frogs from different populations to evaluate fitness consequences for the offspring from an inbreeding-outbreeding perspective, and to evaluate quantitative genetic effects on immunocompetence against a fungal pathogen (Saprolegnia). Crosses between closely situated populations of different sizes generated contrasting results for the effects of outbreeding on offspring traits between populations and life history stages, emphasizing the importance of epistatic effects and the difficulties of relying on generalizations when making conservation decisions (e.g., regarding translocations). Experimental infection of frog eggs from six populations with Saprolegnia fungus showed a significant family effect on the degree of infection of eggs and embryos, in particular at lower fertilization success and with a significant temperature × population interaction effect. A paternal genetic effect on fungus resistance was found using a half-sib split design. Furthermore, relatively more eggs were infected when fertilized by sperm from the same, in contrast with a different population. However, there was no evidence for a stronger effect in isolated island populations. Although the mechanistic underpinnings remain unknown, these results suggest substantial levels of genetic variation in resistance to Saprolegnia in natural populations within and among populations. We also found that pre-hatching exposure to Saprolegnia dramatically reduced the size at metamorphosis in the absence of further exposure to the fungus, possible as a delayed effect of impaired embryonic development. However, in contrast to some other amphibians, induced hatching in response to Saprolegnia could not be confirmed. In conclusion, the results suggest that frog populations are genetically diverse even at small geographic scale with frequently strong and unpredictable consequences of in- and outbreeding for the response to stressors

    Analysis of gas exchange in seedlings of Acer saccharum : integration of field and laboratory studies

    Full text link
    In the field, photosynthesis of Acer saccharum seedlings was rarely light saturated, even though light saturation occurs at about 100 μmol quanta m -2 s -1 photosynthetic photon flux density (PPFD). PPFD during more than 75% of the daylight period was 50 μmol m -2 s -1 or less. At these low PPFD's there is a marked interaction of PPFD with the initial slope (CE) of the CO 2 response. At PPFD-saturation CE was 0.018 μmol m -2 s -1 /(μl/l). The apparent quantum efficiency (incident PPFD) at saturating CO 2 was 0.05–0.08 mol/mol. and PPFD-saturated CO 2 exchange was 6–8 μmol m -2 s -1 . The ratio of internal CO 2 concentration to external ( C i / C a ) was 0.7 to 0.8 except during sunflecks when it decreased to 0.5. The decrease in C i / C a during sunflecks was the result of the slow response of stomates to increased PPFD compared to the response of net photosynthesis. An empirical model, which included the above parameters was used to simulate the measured CO 2 exchange rate for portions of two days. Parameter values for the model were determined in experiments separate from the daily time courses being sumulated. Analysis of the field data, partly through the use of simulations, indicate that the elimination of sunflecks would reduce net carbon gain by 5–10%.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47755/1/442_2004_Article_BF00378907.pd

    Biogeographical patterns and speciation of the genus Pinguicula (Lentibulariaceae) inferred by phylogenetic analyses

    Get PDF
    Earlier phylogenetic studies in the genus Pinguicua (Lentibulariaceae) suggested that the species within a geographical region was rather monophyletic, although the sampling was limited or was restricted to specific regions. Those results conflicted with the floral morphology-based classification, which has been widely accepted to date. In the current study, one nuclear ribosomal DNA (internal transcribed spacer; ITS) and two regions of chloroplast DNA (matK and rpl32-trnL), from up to ca. 80% of the taxa in the genus Pinguicula, covering all three subgenera, were sequenced to demonstrate the inconsistency and explore a possible evolutionary history of the genus. Some incongruence was observed between nuclear and chloroplast topologies and the results from each of the three DNA analyses conflicted with the morphology-based subgeneric divisions. Both the ITS tree and network, however, corresponded with the biogeographical patterns of the genus supported by life-forms (winter rosette or hibernaculum formation) and basic chromosome numbers (haploidy). The dormant strategy evolved in a specific geographical region is a phylogenetic constraint and a synapomorphic characteristic within a lineage. Therefore, the results denied the idea that the Mexican group, morphologically divided into the three subgenera, independently acquired winter rosette formations. Topological incongruence among the trees or reticulations, indicated by parallel edges in phylogenetic networks, implied that some taxa originated by introgressive hybridisation. Although there are exceptions, species within the same geographical region arose from a common ancestor. Therefore, the classification by the floral characteristics is rather unreliable. The results obtained from this study suggest that evolution within the genus Pinguicula has involved; 1) ancient expansions to geographical regions with gene flow and subsequent vicariance with genetic drift, 2) acquirement of a common dormant strategy within a specific lineage to adapt a local climate (i.e., synapomorphic characteristic), 3) recent speciation in a short time span linked to introgressive hybridisation or multiplying the ploidy level (i.e., divergence), and 4) parallel evolution in floral traits among lineages found in different geographical regions (i.e., convergence). As such, the floral morphology masks and obscures the phylogenetic relationships among species in the genus

    Genetics of oak species and the spectre of global climate change

    No full text
    Information on the population genetics of oaks is important in designing conservation strategies. If the threat of global warming materializes as projected, it will be necessary to actively intervene to conserve the genetic resources of oaks and other wildland plants. What has been learned about the genetic structure of oak species and gene flow within and among species will guide sampling efforts and the management of in situ reserves. However, it will be necessary to provide a backup for natural reserves by propagating oaks ex situ in provenance tests, clone banks or tissue cuiture.Génétique des chênes et le spectre du changement climatique. L'information relative à la génétique des populations des chênes est un préalable nécessaire à l'adoption d'une stratégie de conservation de ces espèces. Si la menace du réchauffement global se concrétise, des mesures concrètes devront être prises pour sauvegarder les ressources génétiques des chênes et d'autres espèces sauvages. Les connaissances acquises à propos de la structure génétique des chênes et des flux géniques à l'intérieur et entre espèces seront valorisées dans l'échantillonnage et la gestion in situ des réserves. En outre il sera sans doute nécessaire d'attribuer des moyens complémentaires à cette conservation en multipliant ex situ les chênes en tests de provenances, banques de clones ou par la culture in vitro
    corecore