99 research outputs found

    Local and landscape scale determinants of biodiversity and conservation value of macroinvertebrate assemblages in ponds across an urban land-use gradient

    Get PDF
    Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
    corecore