227 research outputs found

    Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin degrading enzyme (IDE) is implicated in the regulation of amyloid β (Aβ) steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD). Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined.</p> <p>Results</p> <p>Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM)-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs) and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD), endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol) due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro.</p> <p>Conclusion</p> <p>Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for insulin proteolysis. The concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of Aβ in vivo deserves further investigation in light of therapeutic strategies based on enhancing Aβ proteolysis in which DRM protease-targeting may need to be taken into account.</p

    Parenting in the context of driving: Spanish adaptation of the Family Climate for Road Safety (FCRSS) for parents and children

    Get PDF
    The Family Climate for Road Safety Scale (FCRSS; Taubman – Ben-Ari & Katz – Ben-Ami, 2013) is a comprehensive measure originally developed in Israel to assess parent-children relations in the specific context of driving. The scale consists of seven dimensions: Modelling, Feedback, Communication, Monitoring, Messages, Limits, and Non-commitment to Safety. While the original FCRSS examines the young drivers’ perception across the seven domains, a version applicable to parents has also been developed by the same authors. The current study investigates the validity and reliability of the FCRSS-Spain for both parents and young drivers. A total of 377 parents (199 fathers and 178 mothers) and 243 of their children (143 daughters and 100 sons) responded to the FCRSS-Spain versions and provided sociodemographic data. In addition, the young drivers completed the Spanish version of the Multidimensional Driving Style Inventory (MDSI-Spain). Results from exploratory structural equation modelling (ESEM) indicate that six out of the seven FCRSS domains were replicable among Spanish drivers. The Messages dimension did not emerge as a consistent factor in the FCRSS for either parents or young drivers. All six factors demonstrated good internal consistency reliability (ordinal alpha coefficients exceeding 0.70), except for Non-commitment to safety. Significant differences were found between mothers and fathers in various FCRSS dimensions in the predicted direction, whereas no significant differences in FCRSS scores were found between young men and young women. As expected, associations were found between parents’ scores in various FCRSS dimensions and the reckless, angry, dissociative, anxious, and careful driving styles reported by the young drivers, as well as between young drivers’ FCRSS scores and their self-reported reckless, angry, dissociative, anxious, and careful driving styles

    RETRACTED ARTICLE: Age-dependent Increase in Desmosterol Restores DRM Formation and Membrane-related Functions in Cholesterol-free DHCR24−/− Mice

    Get PDF
    Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse

    Prion Protein Accumulation In Lipid Rafts of Mouse Aging Brain

    Get PDF
    The cellular form of the prion protein (PrP(C)) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C). In old mice, this change favors PrP(C) accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C) translocation into detergent-resistant membranes (DRMs), we looked at PrP(C) compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C) in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases

    The Comprehensive Native Interactome of a Fully Functional Tagged Prion Protein

    Get PDF
    The enumeration of the interaction partners of the cellular prion protein, PrPC, may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrPC. When expressed in transgenic mice, PrPmyc carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrPC. PrPmyc antagonized the toxicity of truncated PrP, restored prion infectibility of PrPC-deficient mice, and was physically incorporated into PrPSc aggregates, indicating that it possessed all functional characteristics of genuine PrPC. We then immunopurified myc epitope-containing protein complexes from PrPmyc transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrPC and may represent component of a multiprotein complex. Selected PrPC interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance

    Accumulation of neutral lipids in peripheral blood mononuclear cells as a distinctive trait of Alzheimer patients and asymptomatic subjects at risk of disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease is the most common progressive neurodegenerative disease. In recent years, numerous progresses in the discovery of novel Alzheimer's disease molecular biomarkers in brain as well as in biological fluids have been made. Among them, those involving lipid metabolism are emerging as potential candidates. In particular, an accumulation of neutral lipids was recently found by us in skin fibroblasts from Alzheimer's disease patients. Therefore, with the aim to assess whether peripheral alterations in cholesterol homeostasis might be relevant in Alzheimer's disease development and progression, in the present study we analyzed lipid metabolism in plasma and peripheral blood mononuclear cells from Alzheimer's disease patients and from their first-degree relatives.</p> <p>Methods</p> <p>Blood samples were obtained from 93 patients with probable Alzheimer's disease and from 91 of their first-degree relatives. As controls we utilized 57, cognitively normal, over-65 year-old volunteers and 113 blood donors aged 21-66 years, respectively. Data are reported as mean ± standard error. Statistical calculations were performed using the statistical analysis software Origin 8.0 version. Data analysis was done using the Student t-test and the Pearson test.</p> <p>Results</p> <p>Data reported here show high neutral lipid levels and increased ACAT-1 protein in about 85% of peripheral blood mononuclear cells freshly isolated (<it>ex vivo</it>) from patients with probable sporadic Alzheimer's disease compared to about 7% of cognitively normal age-matched controls. A significant reduction in high density lipoprotein-cholesterol levels in plasma from Alzheimer's disease blood samples was also observed. Additionally, correlation analyses reveal a negative correlation between high density lipoprotein-cholesterol and cognitive capacity, as determined by Mini Mental State Examination, as well as between high density lipoprotein-cholesterol and neutral lipid accumulation. We observed great variability in the neutral lipid-peripheral blood mononuclear cells data and in plasma lipid analysis of the subjects enrolled as Alzheimer's disease-first-degree relatives. However, about 30% of them tend to display a peripheral metabolic cholesterol pattern similar to that exhibited by Alzheimer's disease patients.</p> <p>Conclusion</p> <p>We suggest that neutral lipid-peripheral blood mononuclear cells and plasma high density lipoprotein-cholesterol determinations might be of interest to outline a distinctive metabolic profile applying to both Alzheimer's disease patients and asymptomatic subjects at higher risk of disease.</p

    The Hemorrhagic Coli Pilus (HCP) of Escherichia coli O157:H7 Is an Inducer of Proinflammatory Cytokine Secretion in Intestinal Epithelial Cells

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS), produces long bundles of type IV pili (TFP) called hemorrhagic coli pili (HCP). HCP are capable of mediating several phenomena associated with pathogenicity: i) adherence to human and bovine epithelial cells; ii) invasion of epithelial cells; iii) hemagglutination of rabbit erythrocytes; iv) biofilm formation; v) twitching motility; and vi) specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA) encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12).In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells) and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs.The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a significant role in the pathogenesis of hemorrhagic colitis caused by this pathogen
    corecore