1,809 research outputs found

    Process for producing tris s(n-methylamino) methylsilane

    Get PDF
    A method of producing tris (N-methylamine) methylsilane is described including the steps of forming and cooling a liquid solution of methylamine in an inert solvent and under an inert atmosphere at a temperature of about -30 C and slowly adding a quantity of methyltricholorosilane while maintaining said temperature. The reaction mixture is then heated for about 60 minutes at a temperature of about 40 C, followed by filtering the solid portion from the liquid portion. The liquid is distilled to remove the solvent, resulting in a high yield of tris (N-methylamine) methylsilane

    Can the Curse Be Reversed?: An Action Research Study of the Effect of Constructivist-Aligned Instructional Strategies and Practices on the Mathematical Identity Development of Fifth- Grade Students

    Get PDF
    The aim of this mixed-methods action research study was to determine how my fifth-grade students were impacted by negative mathematical identity and/or math anxiety and to uncover the impact of constructivist-aligned instructional strategies on students’ mathematical identity. Grounded in a theoretical framework based on constructivist learning theory, identity theory, and communities of practice, the study used a convergent mixed-methods action research approach to investigate the following research questions: How does negative mathematical identity and/or math anxiety impact my students? 2) What classroom practices contribute to the development of negative mathematical identity and how can those practices be replaced? 3) How do constructivist-aligned instructional strategies affect mathematical identity in fifth-grade students? Results derived from pre- and post-intervention surveys, semi-structured interviews, and exit slips indicate that many of my students suffered from some degree of math anxiety or negative mathematical identity. Additionally, study results show an increase in overall positive beliefs about mathematics and increased self-efficacy in mathematics during constructivist-aligned intervention. Based on these results, I conclude that constructivist- aligned strategies and practices contribute to an increased positive mathematical identity in fifth-grade learners

    Face at the Window

    Get PDF

    Non-linear amplification of small spin precession using long range dipolar interactions

    Full text link
    In measurements of small signals using spin precession the precession angle usually grows linearly in time. We show that non-linear interactions between particles can lead to an exponentially growing spin precession angle, resulting in an amplification of small signals and raising them above the noise level of a detection system. We demonstrate amplification by a factor of greater than 8 of a spin precession signal due to a small magnetic field gradient in a spherical cell filled with hyperpolarized liquid 129^{129}Xe. This technique can improve the sensitivity in many measurements that are limited by the noise of the detection system, rather then the fundamental spin-projection noise.Comment: 4 pages, 4 figure

    Elastic properties of cubic crystals: Every's versus Blackman's diagram

    Full text link
    Blackman's diagram of two dimensionless ratios of elastic constants is frequently used to correlate elastic properties of cubic crystals with interatomic bondings. Every's diagram of a different set of two dimensionless variables was used by us for classification of various properties of such crystals. We compare these two ways of characterization of elastic properties of cubic materials and consider the description of various groups of materials, e.g. simple metals, oxides, and alkali halides. With exception of intermediate valent compounds, the correlation coefficients for Every's diagrams of various groups of materials are greater than for Blackaman's diagrams, revealing the existence of a linear relationship between two dimensionless Every's variables. Alignment of elements and compounds along lines of constant Poisson's ratio ν(,m)\nu(,\textbf{m}), (m\textbf{m} arbitrary perpendicular to ) is observed. Division of the stability region in Blackman's diagram into region of complete auxetics, auxetics and non-auxetics is introduced. Correlations of a scaling and an acoustic anisotropy parameter are considered.Comment: 8 pages, 9 figures, presented on The Ninth International School on Theoretical Physics "Symmetry and Structural Properties of Condensed Matter", 5 - 12 September 2007, Myczkowce, Polan

    Preparation of silicon carbide-silicon nitride fibers by the pyrolysis of polycarbosilazane precursors

    Get PDF
    The development of silicon carbide-silicon nitride fibers (SiC-Si3N4) by the pyrolysis of polycarbosilazane precursors is reviewed. Precursor resin, which was prepared by heating tris(N-methylamino)methylsilane or tris(N-methylamino)phenylsilane to about 520 C, was drawn into fibers from the melt and then made unmeltable by humidity conditioning at 100 C and 95 percent relative humidity. The humidity treated precursor fibers were pyrolyzed to ceramic fibers with good mechanical properties and electrical resistivity. For example, SiC-Si3N4 fibers derived from tris(N-methylamino)methylsilane had a tensile rupture modulus of 29 million psi and electrical resistivity of 6.9 x ten to the 8th power omega-cm, which is ten to the twelfth power times greater than that obtained for graphite fibers

    Development and test of advanced composite components. Center Directors discretionary fund program

    Get PDF
    This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications

    Gyroscopes based on nitrogen-vacancy centers in diamond

    Full text link
    We propose solid-state gyroscopes based on ensembles of negatively charged nitrogen-vacancy (NV−{\rm NV^-}) centers in diamond. In one scheme, rotation of the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the NV−{\rm NV^{-}} electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. We estimate sensitivity in the range of 5×10−3rad/s/Hz5\times10^{-3} {\rm rad/s/\sqrt{Hz}} in a 1 mm3{\rm mm^3} sensor volume using a simple Ramsey sequence. Incorporating dynamical decoupling to suppress dipolar relaxation may yield sensitivity at the level of 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}. With a modified Ramsey scheme, Berry phase shifts in the 14N{\rm ^{14}N} hyperfine sublevels would be employed. The projected sensitivity is in the range of 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}, however the smaller gyromagnetic ratio reduces sensitivity to magnetic-field noise by several orders of magnitude. Reaching 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}} would represent an order of magnitude improvement over other compact, solid-state gyroscope technologies.Comment: 3 figures, 5 page
    • …
    corecore