845 research outputs found

    Polishness of some topologies related to word or tree automata

    Full text link
    We prove that the B\"uchi topology and the automatic topology are Polish. We also show that this cannot be fully extended to the case of a space of infinite labelled binary trees; in particular the B\"uchi and the Muller topologies are not Polish in this case.Comment: This paper is an extended version of a paper which appeared in the proceedings of the 26th EACSL Annual Conference on Computer Science and Logic, CSL 2017. The main addition with regard to the conference paper consists in the study of the B\"uchi topology and of the Muller topology in the case of a space of trees, which now forms Section

    There Exist some Omega-Powers of Any Borel Rank

    Get PDF
    Omega-powers of finitary languages are languages of infinite words (omega-languages) in the form V^omega, where V is a finitary language over a finite alphabet X. They appear very naturally in the characterizaton of regular or context-free omega-languages. Since the set of infinite words over a finite alphabet X can be equipped with the usual Cantor topology, the question of the topological complexity of omega-powers of finitary languages naturally arises and has been posed by Niwinski (1990), Simonnet (1992) and Staiger (1997). It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, that there exists a context free language L such that L^omega is analytic but not Borel, and that there exists a finitary language V such that V^omega is a Borel set of infinite rank. But it was still unknown which could be the possible infinite Borel ranks of omega-powers. We fill this gap here, proving the following very surprising result which shows that omega-powers exhibit a great topological complexity: for each non-null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers.Comment: To appear in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 2007, Lausanne, Switzerland, September 11-15, 2007, Lecture Notes in Computer Science, (c) Springer, 200

    Topological Complexity of omega-Powers : Extended Abstract

    Get PDF
    This is an extended abstract presenting new results on the topological complexity of omega-powers (which are included in a paper "Classical and effective descriptive complexities of omega-powers" available from arXiv:0708.4176) and reflecting also some open questions which were discussed during the Dagstuhl seminar on "Topological and Game-Theoretic Aspects of Infinite Computations" 29.06.08 - 04.07.08

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    Decision Problems For Turing Machines

    Get PDF
    We answer two questions posed by Castro and Cucker, giving the exact complexities of two decision problems about cardinalities of omega-languages of Turing machines. Firstly, it is D2(Σ11)D_2(\Sigma_1^1)-complete to determine whether the omega-language of a given Turing machine is countably infinite, where D2(Σ11)D_2(\Sigma_1^1) is the class of 2-differences of Σ11\Sigma_1^1-sets. Secondly, it is Σ11\Sigma_1^1-complete to determine whether the omega-language of a given Turing machine is uncountable.Comment: To appear in Information Processing Letter

    Classical and Effective Descriptive Complexities of omega-Powers

    Get PDF
    Final Version, published in A.P.A.L. This paper is an extended version of a conference paper which appeared in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 07. Part of the results in this paper have been also presented at the International Conference Computability in Europe, CiE 07, Siena, Italy, June 2007.International audienceWe prove that, for each non null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers, extending previous works on the topological complexity of omega-powers. We prove effective versions of these results. In particular, for each non null recursive ordinal alpha, there exists a recursive finitary language A such that A^omega is Sigma^0_alpha-complete (respectively, Pi^0_alpha-complete). To do this, we prove effective versions of a result by Kuratowski, describing a Borel set as the range of a closed subset of the Baire space by a continuous bijection. This leads us to prove closure properties for the classes Effective-Pi^0_alpha and Effective-Sigma^0_alpha of the hyperarithmetical hierarchy in arbitrary recursively presented Polish spaces. We apply our existence results to get better computations of the topological complexity of some sets of dictionaries considered by the second author in [Omega-Powers and Descriptive Set Theory, Journal of Symbolic Logic, Volume 70 (4), 2005, p. 1210-1232]

    Classical and Effective Descriptive Complexities of omega-Powers

    Get PDF
    We prove that, for each non null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers, extending previous works on the topological complexity of omega-powers. We prove effective versions of these results. In particular, for each non null recursive ordinal alpha, there exists a recursive finitary language A such that A^omega is Sigma^0_alpha-complete (respectively, Pi^0_alpha-complete). To do this, we prove effective versions of a result by Kuratowski, describing a Borel set as the range of a closed subset of the Baire space by a continuous bijection. This leads us to prove closure properties for the classes Effective-Pi^0_alpha and Effective-Sigma^0_alpha of the hyperarithmetical hierarchy in arbitrary recursively presented Polish spaces. We apply our existence results to get better computations of the topological complexity of some sets of dictionaries considered by the second author in [Omega-Powers and Descriptive Set Theory, Journal of Symbolic Logic, Volume 70 (4), 2005, p. 1210-1232].Comment: Final Version, published in A.P.A.L. This paper is an extended version of a conference paper which appeared in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 07. Part of the results in this paper have been also presented at the International Conference Computability in Europe, CiE 07, Siena, Italy, June 200
    corecore