21 research outputs found

    Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET

    No full text
    The Rho GTPase Rac1 controls cell adhesion and motility. The effector loop of Rac1 mediates interactions with downstream effectors, whereas its C-terminus binds the exchange factor β-Pix, which mediates Rac1 targeting and activation. Here, we report that Rac1, through its C-terminus, also binds the nuclear oncogene SET/I2PP2A, an inhibitor of the serine/threonine phosphatase PP2A. We found that SET translocates to the plasma membrane in cells that express active Rac1 as well as in migrating cells. Membrane targeting of SET stimulates cell migration in a Rac1-dependent manner. Conversely, reduction of SET expression inhibits Rac1-induced migration, indicating that efficient Rac1 signalling requires membrane recruitment of SET. The recruitment of the SET oncogene to the plasma membrane represents a new feature of Rac1 signalling. Our results suggest a model in which Rac1-stimulated cell motility requires both effector loop-based downstream signalling and recruitment of a signalling amplifier, that is, SET, through the hypervariable C-terminus

    Functional Interaction of Aurora-A and PP2A during Mitosis

    No full text
    Entry into mitosis is a highly regulated process, promoted by the activated Cyclin B1/Cdk1 complex. Activation of this complex is controlled, in part, by the protein kinase Aurora-A, which is a member of a multigenic serine/threonine kinase family. In normal cells, Aurora-A activity is regulated, at least in part, by degradation through the APC-ubiquitin-proteasome pathway. It has recently been proposed that, in Xenopus, Aurora-A degradation can be inhibited by phosphorylation. It would thus be expected that a phosphatase activity would release this blockade at the end of mitosis. Here, we have shown that the protein phosphatase PP2A and Aurora-A are colocalized at the cell poles during mitosis in human cells and interact within the same complex. Using the PP2A inhibitor okadaic acid and an RNAi approach, we have shown that this interaction is functional within the cell. PP2A/Aurora-A interaction is promoted by an S51D mutation in Aurora-A and inhibited by a phosphomimetic peptide centered around Aurora-A S51, thereby strongly suggesting that PP2A controls Aurora-A degradation by dephosphorylating serine 51 in the A box of the human enzyme
    corecore