511 research outputs found

    The oncofetal gene survivin is re-expressed in osteoarthritis and is required for chondrocyte proliferation in vitro

    Get PDF
    Background Regulation of cell death and cell division are key processes during chondrogenesis and in cartilage homeostasis and pathology. The oncogene survivin is considered to be critical for the coordination of mitosis and maintenance of cell viability during embryonic development and in cancer, and is not detectable in most adult differentiated tissues and cells. We analyzed survivin expression in osteoarthritic cartilage and its function in primary human chondrocytes in vitro. Methods Survivin expression was analyzed by immunoblotting and quantitative real-time PCR. The localization was visualized by immunofluorescence. Survivin functions in vitro were investigated by transfection of a specific siRNA. Results Survivin was expressed in human osteoarthritic cartilage, but was not detectable in macroscopically and microscopically unaffected cartilage of osteoarthritic knee joints. In primary human chondrocyte cultures, survivin was localized to heterogeneous subcellular compartments. Suppression of survivin resulted in inhibition of cell cycle progression and sensitization toward apoptotic stimuli in vitro. Conclusions The present study indicates a role for survivin in osteoarthritic cartilage and human chondrocytes. In vitro experiments indicated its involvement in cellular division and viability. Learning more about the functions of survivin in chondrocyte biology might further help toward understanding and modulating the complex processes of cartilage pathology and regeneration

    Inhibition of Thrombin Receptor Signaling on alpha-Smooth Muscle Actin(+) CD34(+) Progenitors Leads to Repair After Murine Immune Vascular Injury

    Get PDF
    OBJECTIVE: The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH). METHODS AND RESULTS: BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells. Compared with syngeneic controls, endogenous CD34(+) cells were mobilized in significant numbers after allogeneic transplantation, the majority showing sustained expression of tissue factor and protease-activated receptor-1 (PAR-1). In WT, most were CD45(+) myeloid progenitors coexpressing CD31, vascular endothelial growth factor receptor-2 and E-selectin; 10% of these cells coexpressed α-SMA and were recruited to the neointima. In contrast, the α-SMA(+) human TFPI(+) CD34(+) cells recruited in Tg recipients were from a CD45(-) lineage. WT CD34(+) cells incubated with a PAR-1 antagonist or taken from PAR-1-deficient mice inhibited IH as Tg cells did. CONCLUSIONS: Specific inhibition of thrombin generation or PAR-1 signaling on α-SMA(+) CD34(+) cells inhibits IH and promotes regenerative repair despite ongoing immune-mediated damage

    Negative Symptoms in Early-Onset Psychosis and Their Association With Antipsychotic Treatment Failure.

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordThe prevalence of negative symptoms (NS) at first episode of early-onset psychosis (EOP), and their effect on psychosis prognosis is unclear. In a sample of 638 children with EOP (aged 10-17 y, 51% male), we assessed (1) the prevalence of NS at first presentation to mental health services and (2) whether NS predicted eventual development of multiple treatment failure (MTF) prior to the age of 18 (defined by initiation of a third trial of novel antipsychotic due to prior insufficient response, intolerable adverse-effects or non-adherence). Data were extracted from the electronic health records held by child inpatient and community-based services in South London, United Kingdom. Natural Language Processing tools were used to measure the presence of Marder Factor NS and antipsychotic use. The association between presenting with ≥2 NS and the development of MTF over a 5-year period was modeled using Cox regression. Out of the 638 children, 37.5% showed ≥2 NS at first presentation, and 124 (19.3%) developed MTF prior to the age of 18. The presence of NS at first episode was significantly associated with MTF (adjusted hazard ratio 1.62, 95% CI 1.07-2.46; P = .02) after controlling for a number of potential confounders including psychosis diagnostic classification, positive symptoms, comorbid depression, and family history of psychosis. Other factors associated with MTF included comorbid autism spectrum disorder, older age at first presentation, Black ethnicity, and family history of psychosis. In EOP, NS at first episode are prevalent and may help identify a subset of children at higher risk of responding poorly to antipsychotics.J.D. received supported by a Medical Research Council (MRC) Clinical Research Training Fellowship (MR/L017105/1) and Psychiatry Research Trust Peggy Pollak Research Fellowship in Developmental Psychiatry. H.D. and S.L. have received salary support from the Foundation of Professional Services to Adolescents, UK. R.D.H. was funded by an MRC Fellowship (MR/J01219X/1). R.P. was funded by an MRC CRTF (MR/K002813/1). C.A., L.P-C., and C.M.D-C. have held grants from the Spanish Ministry of Economy, Industry and Competitiveness. Instituto de Salud Carlos III, co-financed by ERDF Funds from the European Commission, “A way of making Europe,” CIBERSAM, Madrid Regional Government (S2010/BMD-2422 AGES), European Union Structural Funds and European Union Seventh Framework Program under grant agreements FP7-HEALTH-2009-2.2.1-2-241909 (EU-GEI), FP7-HEALTH-2009-2.2.1-3-242114 (OPTiMISE), FP7-HEALTH-2013-2.2.1-2-603196 (PSYSCAN)and FP7- HEALTH-2013-2.2.1-2-602478 (METSY); European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking (grant agreement No-115916; PRISM); Fundación Alicia Koplowitz and Fundación Mutua Madrileña. M.H., J.H.M. and H.S. receive salary support from the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health

    A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe

    The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Get PDF
    Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma

    Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear

    Get PDF
    Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions

    E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells

    Get PDF
    Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells

    Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir

    Get PDF
    In this review, the author discusses the research that led to the identification and characterization of interleukin 6 (IL-6), including his own experience isolating IL-6, and the roles this cytokine has on autoimmune and inflammatory diseases. The cDNAs encoding B-cell stimulatory factor 2 (BSF-2), interferon (IFN)-β2 and a 26-kDa protein were independently cloned in 1986, which in turn led to the identification of each. To resolve the confusing nomenclature, these identical molecules were named IL-6. Characterization of IL-6 revealed a multifunctional cytokine that is involved in not only immune responses but also hematopoiesis, inflammation, and bone metabolism. Moreover, IL-6 makes significant contributions to such autoimmune and inflammatory diseases as rheumatoid arthritis (RA)

    Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir

    Get PDF
    In this review, the author discusses the research that led to the identification and characterization of interleukin 6 (IL-6), including his own experience isolating IL-6, and the roles this cytokine has on autoimmune and inflammatory diseases. The cDNAs encoding B-cell stimulatory factor 2 (BSF-2), interferon (IFN)-β2 and a 26-kDa protein were independently cloned in 1986, which in turn led to the identification of each. To resolve the confusing nomenclature, these identical molecules were named IL-6. Characterization of IL-6 revealed a multifunctional cytokine that is involved in not only immune responses but also hematopoiesis, inflammation, and bone metabolism. Moreover, IL-6 makes significant contributions to such autoimmune and inflammatory diseases as rheumatoid arthritis (RA)
    corecore