190 research outputs found

    Newton regularizations for impedance tomography: a numerical study

    Get PDF

    Local Analysis of Inverse Problems: H\"{o}lder Stability and Iterative Reconstruction

    Full text link
    We consider a class of inverse problems defined by a nonlinear map from parameter or model functions to the data. We assume that solutions exist. The space of model functions is a Banach space which is smooth and uniformly convex; however, the data space can be an arbitrary Banach space. We study sequences of parameter functions generated by a nonlinear Landweber iteration and conditions under which these strongly converge, locally, to the solutions within an appropriate distance. We express the conditions for convergence in terms of H\"{o}lder stability of the inverse maps, which ties naturally to the analysis of inverse problems

    Variational Formulations for Scattering in a 3-Dimensional Acoustic Waveguide

    Get PDF

    Theory of Spike Spiral Waves in a Reaction-Diffusion System

    Full text link
    We discovered a new type of spiral wave solutions in reaction-diffusion systems --- spike spiral wave, which significantly differs from spiral waves observed in FitzHugh-Nagumo-type models. We present an asymptotic theory of these waves in Gray-Scott model. We derive the kinematic relations describing the shape of this spiral and find the dependence of its main parameters on the control parameters. The theory does not rely on the specific features of Gray-Scott model and thus is expected to be applicable to a broad range of reaction-diffusion systems.Comment: 4 pages (REVTeX), 2 figures (postscript), submitted to Phys. Rev. Let

    Microbiological characterisation of community-acquired urinary tract infections in Bagamoyo, Tanzania: a prospective study

    Get PDF
    Urinary tract infections (UTIs) are among the most common infections in sub-Saharan Africa, but microbiological data to guide treatment decisions are limited. Hence, we investigated the bacterial aetiology and corresponding antimicrobial susceptibility patterns in outpatients with UTIs in Bagamoyo, Tanzania. Urine samples from symptomatic individuals were subjected to microbiological examinations for bacterial species identification using conventional methods and disc diffusion-based resistance testing. Subsequently, urine samples were transferred to Germany for confirmatory diagnostics using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and automated resistance testing. Overall, 104 out of 270 (38.5%) individuals had a positive urine culture and 119 putative pathogens were identified. The most frequently detected bacteria were Escherichia coli (23%), Klebsiella spp. (7%), Enterobacter cloacae complex (3%) and Staphylococcus aureus (2%). E. coli isolates showed high resistance against cotrimoxazole (76%), ampicillin (74%), piperacillin (74%) and fluoroquinolones (37%), but widespread susceptibility to meropenem (100%), fosfomycin (98%), piperacillin/tazobactam (97%) and amoxicillin/clavulanic acid (82%). The agreement between E. coli susceptibility testing results in Tanzania and Germany was ≥95%, except for piperacillin/tazobactam (89%) and ciprofloxacin (84%). Given the considerable resistance to frequently prescribed antibiotics, such as cotrimoxazole and fluoroquinolones, future research should explore the potential of oral alternatives (e.g., fosfomycin) for the treatment of UTIs in Tanzania

    Inhibition of SIRT1 Impairs the Accumulation and Transcriptional Activity of HIF-1α Protein under Hypoxic Conditions

    Get PDF
    Sirtuins and hypoxia-inducible transcription factors (HIF) have well-established roles in regulating cellular responses to metabolic and oxidative stress. Recent reports have linked these two protein families by demonstrating that sirtuins can regulate the activity of HIF-1 and HIF-2. Here we investigated the role of SIRT1, a NAD+-dependent deacetylase, in the regulation of HIF-1 activity in hypoxic conditions. Our results show that in hepatocellular carcinoma (HCC) cell lines, hypoxia did not alter SIRT1 mRNA or protein expression, whereas it predictably led to the accumulation of HIF-1α and the up-regulation of its target genes. In hypoxic models in vitro and in in vivo models of systemic hypoxia and xenograft tumor growth, knockdown of SIRT1 protein with shRNA or inhibition of its activity with small molecule inhibitors impaired the accumulation of HIF-1α protein and the transcriptional increase of its target genes. In addition, endogenous SIRT1 and HIF-1α proteins co-immunoprecipitated and loss of SIRT1 activity led to a hyperacetylation of HIF-1α. Taken together, our data suggest that HIF-1α and SIRT1 proteins interact in HCC cells and that HIF-1α is a target of SIRT1 deacetylase activity. Moreover, SIRT1 is necessary for HIF-1α protein accumulation and activation of HIF-1 target genes under hypoxic conditions

    ScanImage: Flexible software for operating laser scanning microscopes

    Get PDF
    BACKGROUND: Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. RESULTS: We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. CONCLUSIONS: We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design

    Does the Potential for Chaos Constrain the Embryonic Cell-Cycle Oscillator?

    Get PDF
    Although many of the core components of the embryonic cell-cycle network have been elucidated, the question of how embryos achieve robust, synchronous cellular divisions post-fertilization remains unexplored. What are the different schemes that could be implemented by the embryo to achieve synchronization? By extending a cell-cycle model previously developed for embryos of the frog Xenopus laevis to include the spatial dimensions of the embryo, we establish a novel role for the rapid, fertilization-initiated calcium wave that triggers cell-cycle oscillations. Specifically, in our simulations a fast calcium wave results in synchronized cell cycles, while a slow wave results in full-blown spatio-temporal chaos. We show that such chaos would ultimately lead to an unpredictable patchwork of cell divisions across the embryo. Given this potential for chaos, our results indicate a novel design principle whereby the fast calcium-wave trigger following embryo fertilization synchronizes cell divisions
    • …
    corecore