452 research outputs found
EXPERIENCING HERITAGE DYNAMIC THROUGH VISUALIZATION
Abstract. The present article aims to consider the added value attached to the usage of new technologies in a project aimed to study heritage. Indeed, multimedia devices could be used to create representations useful to develop and disseminate information integrating the architectural and territorial framework and to reach a general understanding.The processed data come from a research project, based on an interdisciplinary approach, address to the study of medieval buildings in Armenia, Vayots Dzor region, with the aim of studying and understanding the cultural heritage.Three different technologies are used to visualize and disseminate the results of the analyses carried out: the video, the hologram, and the virtual reality. These digital visualization methods enable experts to make the topics investigated accessible and comprehensible to a wider general public with a didactic and informative aim.The solid 3D-model of the site allows to virtually reproduce the reality and to provide a spatial perception of the site. Indeed, it is a neutral base, represents the morphological conformation and settlements, a landscape whose reference points are easily identified with the historical architectures, helping the public and spectators to get oriented inside the territory. These methods of representation allow to move from general view to particular, or to a different frame appropriate to the addressed topic. Thus, it binds the scientific research with the visual part, and enable communication, even in a context where it is difficult to use a common spoken or written language.</p
Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels.
STUDY OBJECTIVES: Low-threshold voltage-gated T-type Ca(2+) channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice).
METHODS: We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings.
RESULTS: CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca(2+) currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10-15 Hz), which was accompanied by an increase in the δ band (1-4 Hz).
CONCLUSIONS: Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms
Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell
Following some recent unexpected hints of neutron production in setups like
high-voltage atmospheric discharges and plasma discharges in electrolytic
cells, we present a measurement of the neutron flux in a configuration similar
to the latter. We use two different types of neutron detectors,
poly-allyl-diglicol-carbonate (PADC, aka CR-39) tracers and Indium disks. At
95% C.L. we provide an upper limit of 1.5 neutrons cm^-2 s^-1 for the thermal
neutron flux at ~5 cm from the center of the cell. Allowing for a higher energy
neutron component the largest allowed flux is 64 neutrons cm^-2 s^-1. This
upper limit is two orders of magnitude smaller than what previously claimed in
an electrolytic cell plasma discharge experiment. Furthermore the behavior of
the CR-39 is discussed to point our possible sources of spurious signals.Comment: 4 pages, 3 figure
Reconstructing Bioinvasion Dynamics Through Micropaleontologic Analysis Highlights the Role of Temperature Change as a Driver of Alien Foraminifera Invasion
Invasive alien species threaten biodiversity and ecosystem structure and functioning, but incomplete assessments of their origins and temporal trends impair our ability to understand the relative importance of different factors driving invasion success. Continuous time-series are needed to assess invasion dynamics, but such data are usually difficult to obtain, especially in the case of small-sized taxa that may remain undetected for several decades. In this study, we show how micropaleontologic analysis of sedimentary cores coupled with radiometric dating can be used to date the first arrival and to reconstruct temporal trends of foraminiferal species, focusing on the alien Amphistegina lobifera and its cryptogenic congener A. lessonii in the Maltese Islands. Our results show that the two species had reached the Central Mediterranean Sea several decades earlier than reported in the literature, with considerable implications for all previous hypotheses of their spreading patterns and rates. By relating the population dynamics of the two foraminifera with trends in sea surface temperature, we document a strong relationship between sea warming and population outbreaks of both species. We conclude that the micropaleontologic approach is a reliable procedure for reconstructing the bioinvasion dynamics of taxa having mineralized remains, and can be added to the toolkit for studying invasions
Analytical Model of Thermo-electrical Behaviour in Superconducting Resistive Core Cables
High field superconducting NbSn accelerators magnets above 14 T, for future High Energy Physics applications, call for improvements in the design of the protection system against resistive transitions. The longitudinal quench propagation velocity (vq) is one of the parameters defining the requirements of the protection. Up to now vq has been always considered as a physical parameter defined by the operating conditions (the bath temperature, cooling conditions, the magnetic field and the over all current density) and the type of superconductor and stabilizer used. It is possible to enhance the quench propagation velocity by segregating a percent of the stabilizer into the core, although keeping the total amount constant and tuning the contact resistance between the superconducting strands and the core. Analytical model and computer simulations are presented to explain the phenomenon. The consequences with respect to minimum quench energy are evidenced and the strategy to optimize the cable designed is discussed
Phasic, nonsynaptic GABA-A receptor-mediated inhibition entrains thalamocortical oscillations.
GABA-A receptors (GABA-ARs) are typically expressed at synaptic or nonsynaptic sites mediating phasic and tonic inhibition, respectively. These two forms of inhibition conjointly control various network oscillations. To disentangle their roles in thalamocortical rhythms, we focally deleted synaptic, γ2 subunit-containing GABA-ARs in the thalamus using viral intervention in mice. After successful removal of γ2 subunit clusters, spontaneous and evoked GABAergic synaptic currents disappeared in thalamocortical cells when the presynaptic, reticular thalamic (nRT) neurons fired in tonic mode. However, when nRT cells fired in burst mode, slow phasic GABA-AR-mediated events persisted, indicating a dynamic, burst-specific recruitment of nonsynaptic GABA-ARs. In vivo, removal of synaptic GABA-ARs reduced the firing of individual thalamocortical cells but did not abolish slow oscillations or sleep spindles. We conclude that nonsynaptic GABA-ARs are recruited in a phasic manner specifically during burst firing of nRT cells and provide sufficient GABA-AR activation to control major thalamocortical oscillations
How do we comprehend linguistic and visual narratives? A study in children with typical development
The present study investigated the comprehension of narrative with reference to global coherence, i.e., the global representation of story meaning and connectedness, across two different expressive modalities: stories conveyed through written language and stories conveyed through sequences of images. Two cognitive abilities possibly underpinning such comprehension were assessed: Central Coherence (CC) and Theory of Mind (ToM). Two groups of children with typical development aged between 8.00 and 10.11 years were included in the study: 40 participants received the narrative comprehension task in the linguistic modality; 40 participants were administered the narrative comprehension task in the visual condition. Analyses revealed that a change in the expressive code used to convey narratives did not entail a change in the overall comprehension performance: children of the two groups performed similarly on the narrative task. As for the cognitive abilities, CC and ToM scores were positively correlated with narrative comprehension score only in the visual narrative comprehension task, and not in the linguistic one. Moreover, a regression analysis showed that, along with age, CC significantly predicted the visual narrative comprehension score. The implications of these results are discussed.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Marine climatological datasets for the Maltese Islands
During the last 25 years of activity, the Physical Oceanography Research Group, previously
known as the PO-Unit, and currently established within the Department of Geosciences of the University
of Malta, has been promoting the downscaling of broad scope marine core services to higher resolution
local scale domains for the Maltese Islands. Several services are delivered either by an intrinsic data
elaboration or by making use of and integrating the COPERNICUS Marine Environment Monitoring
Service (CMEMS) data to local marine data streams. Local observations are also integrated with higher
resolution forecasts for the preparation and provision of dedicated services that address real specific needs
of sub-regional and coastal users. This effort has yielded valuable climatological datasets covering the
Maltese coastal waters and spanning over several years. This work focusses on the climatologies derived
from numerical models and satellites, and compiled within the Interreg MED programme AMAre (Actions
for Marine Protected Areas) project.peer-reviewe
Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.
Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to assess their role in the likelihood of waking up. Our approach has already been extended to human sleep and promises to unravel common organizing principles of non-REM sleep states in mammals
- …