1,669 research outputs found

    Comparisons for Esta-Task3: Cles and Cesam

    Get PDF
    We present the results of comparing three different implementations of the microscopic diffusion process in the stellar evolution codes CESAM and CLES. For each of these implementations we computed models of 1.0, 1.2 and 1.3 M⊙_{\odot}. We analyse the differences in their internal structure at three selected evolutionary stages, as well as the variations of helium abundance and depth of the stellar convective envelope. The origin of these differences and their effects on the seismic properties of the models are also considered.Comment: 10 pages, 8 figures, Joint HELAS and CoRoT/ESTA Workshop on Solar/Stellar Models and Seismic Analysis Tools, Novembre, Porto 2007 To be published in EAS Publications Serie

    Effect of local treatments of convection upon the solar p-mode excitation rates

    Full text link
    We compute, for several solar models, the rates P at which the solar radial p modes are expected to be excited. The solar models are computed with two different local treatments of convection : the classical mixing-length theory (MLT hereafter) and Canuto, Goldmann and Mazzitelli(1996, CGM hereafter)'s formulation. For one set of solar models (EMLT and ECGM models), the atmosphere is gray and assumes Eddington's approximation. For a second set of models (KMLT and KCGM models), the atmosphere is built using a T(tau) law which has been obtained from a Kurucz's model atmosphere computed with the same local treatment of convection. The mixing-length parameter in the model atmosphere is chosen so as to provide a good agreement between synthetic and observed Balmer line profiles, while the mixing-length parameter in the interior model is calibrated so that the model reproduces the solar radius at solar age. For the MLT treatment, the rates P do depend significantly on the properties of the atmosphere. On the other hand, for the CGM treatment, differences in P between the ECGM and the KCGM models are very small compared to the error bars attached to the seismic measurements. The excitation rates P for modes from the EMLT model are significantly under-estimated compared with the solar seismic constraints. The KMLT model results in intermediate values for P and shows also an important discontinuity in the temperature gradient and the convective velocity. On the other hand, the KCGM model and the ECGM model yield values for P closer to the seismic data than the EMLT and KMLT models. We conclude that the solar p-mode excitation rates provide valuable constraints and according to the present investigation cleary favor the CGM treatment with respect to the MLT.Comment: 4 pages, 3 figures, proceedings of the SOHO14/GONG 2004 workshop "Helio- and Asteroseismology: Towards a Golden Future" from July 12-16 2004 at New Haven CT (USA

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Asteroseismology of delta Scuti stars in open clusters: Praesepe

    Full text link
    The present paper provides a general overview of the asteroseismic potential of delta Scuti stars in clusters, in particular focusing on convection diagnostics. We give a summarise of the last results obtained by the authors for the Praesepe cluster of which five delta Scuti stars are analysed. In that work, linear analysis is confronted with observations, using refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations. A single, complete, and coherent solution for all the selected stars is found, which lead the authors to find important restrictions to the convection description for a certain range of effective temperatures. Furthermore, the method used allowed to give an estimate of the global parameters of the selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in Asteroseismolog

    Influence of local treatments of convection upon solar p mode excitation rates

    Full text link
    We compute the rates P at which acoustic energy is injected into the solar radial p modes for several solar models. The solar models are computed with two different local treatments of convection: the classical mixing-length theory (MLT hereafter) and Canuto et al (1996)'s formulation (CGM hereafter). Among the models investigated here, our best models reproduce both the solar radius and the solar luminosity at solar age and the observed Balmer line profiles. For the MLT treatment, the rates P do depend significantly on the properties of the atmosphere whereas for the CGM's treatment the dependence of P on the properties of the atmosphere is found smaller than the error bars attached to the seismic measurements. The excitation rates P for modes associated with the MLT models are significantly underestimated compared with the solar seismic constraints. The CGM models yield values for P closer to the seismic data than the MLT models. We conclude that the solar p-mode excitation rates provide valuable constraints and according to the present investigation clearly favor the CGM treatment with respect to the MLT, although neither of them yields values of P as close to the observations as recently found for 3D numerical simulations.Comment: 11 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Measurement of the electron drift velocity for directional dark matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : CF4\rm CF_4 and CF4+CHF3\rm CF_4+CHF_3. We also show that adding CHF3\rm CHF_3 allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.Comment: Proceedings of the 4th international conference on Directional Detection of Dark Matter (CYGNUS 2013), 10-12 June 2013, Toyama, Japa

    In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4 + CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.Comment: 19 pages, 14 figures. Minor corrections, matches published version in JINS

    The origin and prevention of pandemics.

    Get PDF
    Despite the fact that most emerging diseases stem from the transmission of pathogenic agents from animals to humans, the factors that mediate this process are still ill defined. What is known, however, is that the interface between humans and animals is of paramount importance in the process. This review will discuss the importance of the human-animal interface to the disease emergence process. We also provide an overview of factors that are believed to contribute to the origin and global spread of emerging infectious diseases and offer suggestions that may serve as future prevention strategies, such as social mobilization, public health education, behavioral change, and communication strategies. Because there exists no comprehensive global surveillance system to monitor zoonotic disease emergence, the intervention measures discussed herein may prove effective temporary alternatives
    • …
    corecore