160 research outputs found

    Multiple intrabeam scattering in X-Y coupled focusing systrems

    Full text link
    This paper describes an analytical theory to calculate the emittance growth rates due to intrabeam scattering in focusing systems with arbitrary x-y coupling. The presented results are based on calculations of average emittance growth rates for an initially Gaussian distribution

    Multiple intrabeam scattering in X-Y coupled focusing systrems

    Get PDF
    This paper describes an analytical theory to calculate the emittance growth rates due to intrabeam scattering in focusing systems with arbitrary x-y coupling. The presented results are based on calculations of average emittance growth rates for an initially Gaussian distribution

    Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    Full text link
    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.Comment: 5 pp. 11th International Workshop on Neutrino Factories, Superbeams and Betabeams: NuFact 09. 20-25 Jul 2009. Chicago, Illinoi

    Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario

    Get PDF
    We study the azimuthally anisotropic upper-mantle structure of the Superior Craton and Grenville Province in Ontario, Canada, using Rayleigh wave phase-velocity data in the period range 40–160 s. 152 two-station dispersion measurements are combined in a tomographic inversion that solves simultaneously for isotropic and anisotropic terms using a least-squares technique. We perform a series of tests to derive optimal regularization (smoothing and damping) and to assess the resolution of, and trade-offs between, isotropic and anisotropic anomalies. The tomographic inversion is able to resolve isotropic phase-velocity anomalies on a scale of 200-300 km and to distinguish between different anisotropic regimes on a 500-km scale across the study region.\ud \ud Isotropic phase-velocity anomalies in the tomographic model span a range of up to ±2 per cent around a regional average which is similar to the Canadian Shield dispersion curve of Brune & Dorman (1963), with phase velocities up to 3 per cent above global reference models. The amplitude of azimuthal phase-velocity anisotropy reaches a maximum of ∼1.2 per cent. A clear east–west division of the study area, based on both isotropic phase-velocity anomalies and azimuthal anisotropy, is apparent.\ud \ud In the western Superior, isotropic phase velocities are generally higher than the regional average. Anisotropy is observed at all periods, with ENE–WSW to NE–SW fast-propagation directions. At periods ≤120 s, the anisotropy likely results from frozen lithospheric fabric aligned with tectonic boundaries, whereas the anisotropy at longer periods is interpreted to arise from present-day sublithospheric flow. The fast directions from published SKS measurements are close to the fast Rayleigh wave propagation directions throughout the period range sampled, and the large SKS splitting times may be accounted for by this near-coincidence of fast-propagation directions. Across most of eastern Ontario, phase velocities are lower than the regional average. Fast-propagation directions rotate from ∼NW–SE at 40–130 s period to WNW–ESE at periods 140–160 s. The results suggest a difference in fast-propagation directions between the anisotropic fabric frozen into the lithosphere and the fabric due to current and recent sublithospheric flow.\ud \ud The Superior Craton and Grenville Province are characterized by large-scale structural variations that reflect the complex tectonic history of the region. This study highlights differences between the characteristics of eastern and western Ontario and indicates the occurrence of multiple layers of anisotropy in the subcratonic upper mantle

    Seismic evidence for olivine phase changes at the 410- and 660-kilometer discontinuities

    Get PDF
    The view that the seismic discontinuities bounding the mantle transition zone at 410- and 660-kilometer depths are caused by isochemical phase transformations of the olivine structure is debated. Combining converted-wave measurements in East Asia and Australia with seismic velocities from regional tomography studies, we observe a correlation of the thickness of, and wavespeed variations within, the transition zone that is consistent with olivine structural transformations. Moreover, the seismologically inferred Clapeyron slopes are in agreement with the mineralogical Clapeyron slopes of the (Mg,Fe)2SiO4spinel and postspinel transformations
    • …
    corecore