63 research outputs found

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure

    Axon initial segment dysfunction in a mouse model of human genetic epilepsy with febrile seizures plus

    Get PDF
    Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the ß1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type ß1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the ß1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with ß1(C121W) subunits. We therefore conclude that Na+ channel ß1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired

    Internal mammary lymph node recurrence: rare but characteristic metastasis site in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the frequency of IMLN recurrence, its associated risk factors with disease-free interval (DFI) and its predicting factors on overall survival time.</p> <p>Methods</p> <p>133 cases of breast cancer IMLN recurrence were identified via the computerized CT reporting system between February 2003 and June 2008, during which chest CT for patients with breast cancer (n = 8867) were performed consecutively at Cancer Hospital, Fudan University, Shanghai, China. Patients' charts were retrieved and patients' characteristics, disease characteristics, and treatments after recurrence were collected for analysis. The frequency was 1.5% (133/8867).</p> <p>Results</p> <p>IMLN recurrence was presented as the first metastatic site in 121 (91%) patients while 88 (66.2%) had other concurrent metastases. Typical chest CT images included swelling of the IMLN at the ipsilateral side with local lump and sternal erosion located mostly between the second and third intercostal space. The median disease-free interval (DFI) of IMLN recurrence was 38 months. The independent factors that could delay the IMLN recurrence were small tumor size (HR 0.5 95%CI: 0.4 - 0.8; <it>p </it>= 0.002), and positive ER/PR disease (HR 0.6, 95% CI: 0.4 - 0.9; <it>p </it>= 0.006). The median survival time after IMLN recurrence was 42 months, with a 5-year survival rate of 30%. Univariate analysis showed four variables significantly influenced the survival time: DFI of IMLN recurrence (p = 0.001), no concurrent distant metastasis (p = 0.024), endocrine therapy for patients with positive ER/PR (p = 0.000), radiotherapy (p = 0.040). The independent factors that reduced the death risk were no concurrent distant metastases (HR: 0.7, 95% CI: 0.4 - 0.9; <it>p </it>= 0.031), endocrine therapy for patients with positive ER/PR status (HR: 0.2, 95% CI: 0.1 - 0.5; <it>p </it>= 0.001) and palliative radiotherapy (HR: 0.3, 95% CI: 0.1- 0.9; <it>p </it>= 0.026).</p> <p>Conclusions</p> <p>The risk of IMLN recurrence is low and there are certain characteristics features on CT images. ER/PR status is both a risk factor for DFI of IMLN recurrence and a prognostic factor for overall survival after IMLN recurrence. Patients with only IMLN recurrence and/or local lesion have a good prognosis.</p

    A software pipeline for processing and identification of fungal ITS sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi from environmental samples are typically identified to species level through DNA sequencing of the nuclear ribosomal internal transcribed spacer (<it>ITS</it>) region for use in BLAST-based similarity searches in the International Nucleotide Sequence Databases. These searches are time-consuming and regularly require a significant amount of manual intervention and complementary analyses. We here present software – in the form of an identification pipeline for large sets of fungal <it>ITS </it>sequences – developed to automate the BLAST process and several additional analysis steps. The performance of the pipeline was evaluated on a dataset of 350 <it>ITS </it>sequences from fungi growing as epiphytes on building material.</p> <p>Results</p> <p>The pipeline was written in Perl and uses a local installation of NCBI-BLAST for the similarity searches of the query sequences. The variable subregion <it>ITS2 </it>of the <it>ITS </it>region is extracted from the sequences and used for additional searches of higher sensitivity. Multiple alignments of each query sequence and its closest matches are computed, and query sequences sharing at least 50% of their best matches are clustered to facilitate the evaluation of hypothetically conspecific groups. The pipeline proved to speed up the processing, as well as enhance the resolution, of the evaluation dataset considerably, and the fungi were found to belong chiefly to the <it>Ascomycota</it>, with <it>Penicillium </it>and <it>Aspergillus </it>as the two most common genera. The <it>ITS2 </it>was found to indicate a different taxonomic affiliation than did the complete <it>ITS </it>region for 10% of the query sequences, though this figure is likely to vary with the taxonomic scope of the query sequences.</p> <p>Conclusion</p> <p>The present software readily assigns large sets of fungal query sequences to their respective best matches in the international sequence databases and places them in a larger biological context. The output is highly structured to be easy to process, although it still needs to be inspected and possibly corrected for the impact of the incomplete and sometimes erroneously annotated fungal entries in these databases. The open source pipeline is available for UNIX-type platforms, and updated releases of the target database are made available biweekly. The pipeline is easily modified to operate on other molecular regions and organism groups.</p

    Phylogeography of Ostreopsis along West Pacific Coast, with Special Reference to a Novel Clade from Japan

    Get PDF
    BACKGROUND: A dinoflagellate genus Ostreopsis is known as a potential producer of Palytoxin derivatives. Palytoxin is the most potent non-proteinaceous compound reported so far. There has been a growing number of reports on palytoxin-like poisonings in southern areas of Japan; however, the distribution of Ostreopsis has not been investigated so far. Morphological plasticity of Ostreopsis makes reliable microscopic identification difficult so the employment of molecular tools was desirable. METHODS/PRINCIPAL FINDING: In total 223 clones were examined from samples mainly collected from southern areas of Japan. The D8-D10 region of the nuclear large subunit rDNA (D8-D10) was selected as a genetic marker and phylogenetic analyses were conducted. Although most of the clones were unable to be identified, there potentially 8 putative species established during this study. Among them, Ostreopsis sp. 1-5 did not belong to any known clade, and each of them formed its own clade. The dominant species was Ostreopsis sp. 1, which accounted for more than half of the clones and which was highly toxic and only distributed along the Japanese coast. Comparisons between the D8-D10 and the Internal Transcribed Spacer (ITS) region of the nuclear rDNA, which has widely been used for phylogenetic/phylogeographic studies in Ostreopsis, revealed that the D8-D10 was less variable than the ITS, making consistent and reliable phylogenetic reconstruction possible. CONCLUSIONS/SIGNIFICANCE: This study unveiled a surprisingly diverse and widespread distribution of Japanese Ostreopsis. Further study will be required to better understand the phylogeography of the genus. Our results posed the urgent need for the development of the early detection/warning systems for Ostreopsis, particularly for the widely distributed and strongly toxic Ostreopsis sp. 1. The D8-D10 marker will be suitable for these purposes

    A review on synthesis of kaolin‐based zeolite and the effect of impurities

    No full text
    Zeolite is extensively synthesized for the application in a large variety of catalysis processes such as ion exchange, hydrocarbon cracking, and organic synthesis. In order to satisfy the serious terms of sustainability that denotes to the reduction of costs and chemical waste, kaolinite-based zeolites were produced from cheap natural resources as against to the conventional process that employs pure sodium silicate and sodium aluminate. This review paper is to highlight the current trends in the synthesis of zeolite. Prior to previous reviews, great concern is focused on the impurities effect on the catalytic performance of kaolinite-based zeolites. This study reveals that the impact of impurities in a catalytic reaction was in fact, underestimated or neglected. For instance, it was found that Fe ion concentration as small as 60 ppm gives significant catalytic output. Hence, a new practice to report the concentration of impurities in the research publication is suggested. This undoubtedly will generate a better interpretation of the catalytic activity from the zeolite framework

    Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation

    Get PDF
    The capacity for induced pluripotent stem (iPS) cells to be differentiated into a wide range of neural cell types makes them an attractive donor source for autologous neural transplantation therapies aimed at brain repair. Translation to the in vivo setting has been difficult, however, with mixed results in a wide variety of preclinical models of brain injury and limited information on the basic in vivo properties of neural grafts generated from human iPS cells. Here we have generated a human iPS cell line constitutively expressing green fluorescent protein as a basis to identify and characterize grafts resulting from transplantation of neural progenitors into the adult rat brain. The results show that the grafts contain a mix of neural cell types, at various stages of differentiation, including neurons that establish extensive patterns of axonal growth and progressively develop functional properties over the course of 1 year after implantation. These findings form an important basis for the design and interpretation of preclinical studies using human stem cells for functional circuit re-construction in animal models of brain injury. Stem Cells Translational Medicine 2017;6:1547-1556
    corecore