4 research outputs found

    Atrazine degradation patterns: the role of straw cover and herbicide application history

    Get PDF
    In Brazil, atrazine (ATZ) is widely applied to maize (Zea mays L.) fields for weed control. The presence of ATZ and its metabolites in soil and water matrices has become a matter of some concern for governmental authorities as well as for society at large. This study evaluated the patterns of ATZ degradation (mineralization, extractable and non-extractable ATZ residues, and metabolite formation) in a Brazilian Typic Paleudult. Soil samples from a cultivated area under a no-tillage system with a history of ATZ application were incubated with 14C-ATZ in both the presence and absence of straw cover on the soil surface, and the evolved 14CO2 was determined by liquid scintillation. Samples from an area with native vegetation, adjacent to the cultivated area, were also incubated as a control. A higher mineralization of ATZ was observed in the cultivated soil (> 85 %) in comparison with the native soil (10 %) after 85 days of incubation. In addition to the higher mineralization and hydroxyatrazine (HA) formation, a rapid decrease in the water-extractable residues was observed in the cultivated soil. When the cultivated soil was covered with straw, mineralization was reduced by up to 30 % although a small amount of remobilization to the soil occurred within the 85 days. Straw cover hindered the degradation of ATZ in cultivated soils; whereas an accelerated biodegradation was due to repeated applications of ATZ, which may have selected microbiota more skilled at biodegrading the herbicide

    Atrazine degradation patterns: the role of straw cover and herbicide application history

    Get PDF
    In Brazil, atrazine (ATZ) is widely applied to maize (Zea mays L.) fields for weed control. The presence of ATZ and its metabolites in soil and water matrices has become a matter of some concern for governmental authorities as well as for society at large. This study evaluated the patterns of ATZ degradation (mineralization, extractable and non-extractable ATZ residues, and metabolite formation) in a Brazilian Typic Paleudult. Soil samples from a cultivated area under a no-tillage system with a history of ATZ application were incubated with 14C-ATZ in both the presence and absence of straw cover on the soil surface, and the evolved 14CO2 was determined by liquid scintillation. Samples from an area with native vegetation, adjacent to the cultivated area, were also incubated as a control. A higher mineralization of ATZ was observed in the cultivated soil (> 85 %) in comparison with the native soil (10 %) after 85 days of incubation. In addition to the higher mineralization and hydroxyatrazine (HA) formation, a rapid decrease in the water-extractable residues was observed in the cultivated soil. When the cultivated soil was covered with straw, mineralization was reduced by up to 30 % although a small amount of remobilization to the soil occurred within the 85 days. Straw cover hindered the degradation of ATZ in cultivated soils; whereas an accelerated biodegradation was due to repeated applications of ATZ, which may have selected microbiota more skilled at biodegrading the herbicide

    Atrazine degradation patterns: the role of straw cover and herbicide application history

    No full text
    ABSTRACT: In Brazil, atrazine (ATZ) is widely applied to maize (Zea mays L.) fields for weed control. The presence of ATZ and its metabolites in soil and water matrices has become a matter of some concern for governmental authorities as well as for society at large. This study evaluated the patterns of ATZ degradation (mineralization, extractable and non-extractable ATZ residues, and metabolite formation) in a Brazilian Typic Paleudult. Soil samples from a cultivated area under a no-tillage system with a history of ATZ application were incubated with 14C-ATZ in both the presence and absence of straw cover on the soil surface, and the evolved 14CO2 was determined by liquid scintillation. Samples from an area with native vegetation, adjacent to the cultivated area, were also incubated as a control. A higher mineralization of ATZ was observed in the cultivated soil (> 85 %) in comparison with the native soil (10 %) after 85 days of incubation. In addition to the higher mineralization and hydroxyatrazine (HA) formation, a rapid decrease in the water-extractable residues was observed in the cultivated soil. When the cultivated soil was covered with straw, mineralization was reduced by up to 30 % although a small amount of remobilization to the soil occurred within the 85 days. Straw cover hindered the degradation of ATZ in cultivated soils; whereas an accelerated biodegradation was due to repeated applications of ATZ, which may have selected microbiota more skilled at biodegrading the herbicide

    Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability

    No full text
    16 páginas.- 3 figuras.- 67 referencias.- This article belongs to the Special Issue Biochar as Soil Amendment: Impact on Soil Properties and Sustainable Resource ManagementBiochar has been shown as a potential mean to enhance carbon sequestration in the soil. In Brazil, approximately 15% of the produced charcoal is discarded as charcoal fines, which are chemically similar to biochar. Therefore, we aimed to test charcoal fines as a strategy to increase soil carbon sequestration. Charcoal fines of hardwood Mimosa scabrella were incorporated into a Cambisol down to 10 cm (T1 = 0 and T4 = 40 Mg ha−1) in Southern Brazil. Soil samples were collected (0–30 cm) 20 months after charcoal amendment. Soil organic matter (SOM) acid extract, humic acid, fulvic acid, and humin fractions were separated. Solid-state 13C nuclear magnetic resonance (NMR) spectra from charcoal and SOM in T1 and T4 were obtained before and after 165 days of incubation under controlled conditions. Charcoal increased soil carbon as fulvic (10–20 cm) and humic acids (10–30 cm) and, especially, as humin (0–5 cm), which probably occurred due to the hydrophobic character of the charcoal. The 13C NMR spectra and mean residence times (MRT) measured from incubation essays indicated that the charred material decomposed relatively fast and MRT of T1 and T4 samples were similar. It follows that the charcoal fines underwent similar decomposition as SOM, despite the high charcoal dose applied to the soil and the high aryl C contribution (78%) to the total 13C intensity of the charcoal NMR spectraSpanish MINECO INTERCARBON project (CGL2016-78937-R) for supporting this work.Peer reviewe
    corecore