881 research outputs found
Semiclassical description of resonant tunneling
We derive a semiclassical formula for the tunneling current of electrons
trapped in a potential well which can tunnel into and across a wide quantum
well. The calculations idealize an experimental situation where a strong
magnetic field tilted with respect to an electric field is used. The resulting
semiclassical expression is written as the sum over special periodic orbits
which hit both walls of the quantum well and are perpendicular to the first
wall.Comment: LaTeX, 8 page
Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations
AbstractNuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the natC(n,el) reaction at 2.0MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56Fe(n,el) reaction at 14.1MeV, the deviation increases to 11.0%. We show how this discrepancy propagates through to varying levels of simulation complexity. Simulations were run with Turnip-MC and the ENDF-B/VII.1 library in an effort to define a new systematic error for this range of applications. Alternative representations of differential and double differential distributions are explored in addition to their impact on computational efficiency and relevant simulation results
Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digesters
YesPositron emission particle tracking (PEPT) was used to visualise the flow patterns
established by mixing in two laboratory-scale anaerobic digesters fitted with mechanical
mixing or gas mixing apparatus. PEPT allows the visualisation of flow patterns within a
digester without necessitating the use of a transparent synthetic sludge. In the case of the
mechanically-mixed digester, the mixing characteristics of opaque sewage sludge was
compared to a transparent synthetic sludge at different mixing speeds. In the gas-mixed
apparatus, two synthetic sludges were compared. In all scenarios, quasi-toroidal flow paths
were established. However, mixing was less successful in more viscous liquids unless mixing
power was increased to compensate for the increase in viscosity. The robustness of the
PEPT derived velocities was found to be significantly affected by the frequency with which
the particle enters a given volume of the vessel, with the accuracy of the calculated velocity
decreasing in regions with low data capture. Nevertheless, PEPT was found to offer a means
of accurate validation of computational fluid dynamics models which in turn can help to
optimise flow patterns for biogas production.The first author was funded via an EPSRC CASE award in conjunction with Severn Trent Water. The second author was funded via a University of Birmingham Postgraduate Teaching Assistantship award
Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation
We study numerically the reconnection of quantized vortices and the
concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation.
Two quantized vortices reconnect following the process similar to classical
vortices; they approach, twist themselves locally so that they become
anti-parallel at the closest place, reconnect and leave separately.The
investigation of the motion of the singular lines where the amplitude of the
wave function vanishes in the vortex cores confirms that they follow the above
scenario by reconnecting at a point. This reconnection is not contradictory to
the Kelvin's circulation theorem, because the potential of the superflow field
becomes undefined at the reconnection point. When the locally anti-parallel
part of the vortices becomes closer than the healing length, it moves with the
velocity comparable to the sound velocity, emits the sound waves and leads to
the pair annihilation or reconnection; this phenomena is concerned with the
Cherenkov resonance. The vortices are broken up to smaller vortex loops through
a series of reconnection, eventually disappearing with the acoustic emission.
This may correspond to the final stage of the vortex cascade process proposed
by Feynman. The change in energy components, such as the quantum, the
compressible and incompressible kinetic energy is analyzed for each dynamics.
The propagation of the sound waves not only appears in the profile of the
amplitude of the wave function but also affects the field of its phase,
transforming the quantum energy due to the vortex cores to the kinetic energy
of the phase field.Comment: 11 pages, 16 figures, LaTe
Conspecific and Heterospecific Information Use in Bumblebees
Heterospecific social learning has been understudied in comparison to interactions between members of the same species. However, the learning mechanisms behind such information use can allow animals to be flexible in the cues that are used. This raises the question of whether conspecific cues are inherently more influential than cues provided by heterospecifics, or whether animals can simply use any cue that predicts fitness enhancing conditions, including those provided by heterospecifics. To determine how freely social information travels across species boundaries, we trained bumblebees (Bombus terrestris) to learn to use cues provided by conspecifics and heterospecific honey bees (Apis mellifera) to locate valuable floral resources. We found that heterospecific demonstrators did not differ from conspecifics in the extent to which they guided observers' choices, whereas various types of inorganic visual cues were consistently less effective than conspecifics. This was also true in a transfer test where bees were confronted with a novel flower type. However, in the transfer test, conspecifics were slightly more effective than heterospecific demonstrators. We then repeated the experiment with entirely naïve bees that had never foraged alongside conspecifics before. In this case, heterospecific demonstrators were equally efficient as conspecifics both in the initial learning task and the transfer test. Our findings demonstrate that social learning is not a unique process limited to conspecifics and that through associative learning, interspecifically sourced information can be just as valuable as that provided by conspecific individuals. Furthermore the results of this study highlight potential implications for understanding competition within natural pollinator communities
Creation of solitons and vortices by Bragg reflection of Bose-Einstein condensates in an optical lattice
We study the dynamics of Bose-Einstein condensates in an optical lattice and
harmonic trap. The condensates are set in motion by displacing the trap and
initially follow simple semiclassical paths, shaped by the lowest energy band.
Above a critical displacement, the condensate undergoes Bragg reflection. For
high atom densities, the first Bragg reflection generates a train of solitons
and vortices, which destabilize the condensate and trigger explosive expansion.
At lower densities, soliton and vortex formation requires multiple Bragg
reflections, and damps the center-of-mass motion.Comment: 5 pages including 5 figures (for higher resolution figures please
email the authors
Tunable Lyapunov exponent in inverse magnetic billiards
The stability properties of the classical trajectories of charged particles
are investigated in a two dimensional stadium-shaped inverse magnetic domain,
where the magnetic field is zero inside the stadium domain and constant
outside. In the case of infinite magnetic field the dynamics of the system is
the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for
weaker magnetic fields the phase space becomes mixed and the chaotic part
gradually shrinks. The numerical measurements of the Lyapunov exponent
(performed with a novel method) and the integrable/chaotic phase space volume
ratio show that both quantities can be smoothly tuned by varying the external
magnetic field. A possible experimental realization of the arrangement is also
discussed.Comment: 4 pages, 6 figure
- …