829 research outputs found

    Directed searches for continuous gravitational waves from binary systems: parameter-space metrics and optimal Scorpius X-1 sensitivity

    Get PDF
    We derive simple analytic expressions for the (coherent and semi-coherent) phase metrics of continuous-wave sources in low-eccentricity binary systems, both for the long-segment and short- segment regimes (compared to the orbital period). The resulting expressions correct and extend previous results found in the literature. We present results of extensive Monte-Carlo studies comparing metric mismatch predictions against the measured loss of detection statistic for binary parameter offsets. The agreement is generally found to be within ~ 10%-30%. As an application of the metric template expressions, we estimate the optimal achievable sensitivity of an Einstein@Home directed search for Scorpius X-1, under the assumption of sufficiently small spin wandering. We find that such a search, using data from the upcoming advanced detectors, would be able to beat the torque- balance level [1,2] up to a frequency of ~ 500 - 600 Hz, if orbital eccentricity is well-constrained, and up to a frequency of ~ 160 - 200 Hz for more conservative assumptions about the uncertainty on orbital eccentricity.Comment: 25 pages, 8 figure

    Fully coherent follow-up of continuous gravitational-wave candidates: an application to Einstein@Home results

    Full text link
    We characterize and present the details of the follow-up method used on the most significant outliers of the Hough Einstein@Home all-sky search for continuous gravitational waves arXiv:1207.7176. This follow-up method is based on the two-stage approach introduced in arXiv:1303.2471, consisting of a semicoherent refinement followed by a fully coherent zoom. We quantify the efficiency of the follow-up pipeline using simulated signals in Gaussian noise. This pipeline does not search beyond first-order frequency spindown, and therefore we also evaluate its robustness against second-order spindown. We present the details of the Hough Einstein@Home follow-up (arXiv:1207.7176) on three hardware-injected signals and on the 8 most significant outliers of unknown origin.Comment: 8 pages, 3 figures, 3 table

    Antenna pattern of DUAL detectors of gravitational waves and its exploitation in a network of advanced interferometers

    Get PDF
    We investigate the directional sensitivity to plane gravitational waves (GWs) of DUAL detectors of cylindrical shape. Calculations make use of the finite element method to simulate the responses to the GW Riemann tensor of a single-mass DUAL (SMD) and of a tapered cylinder (TC) in their wide sensitivity bandwidth. We show that one SMD or a pair of TCs is able to cover both GW polarization amplitudes from almost all incoming directions. We discuss the achievable enhancement in tackling the inverse problem for high frequency [~(2–5) kHz] GWs by adding a TC detector to the future advanced LIGO–VIRGO network

    Symmetrized fractional total variation for signal and image analysis

    Get PDF
    We introduce and study a variational model for signal and image analysis based on Riemann–Liouville fractional derivatives. Both the one-dimensional and two-dimensional cases are studied. The model exploits a quadratic fitting data term together with both right and left Riemann–Liouville fractional derivatives as regularizing terms, with the aim of achieving an orientation-independent analysis

    Bilateral Riemann-Liouville Fractional Sobolev spaces

    Get PDF
    We establish some notation and properties of the bilateral Riemann-Liouville fractional derivative Ds.D^s. We introduce the associated Sobolev spaces of fractional order ss, denoted by Ws,1(a,b)W^{s,1}(a,b), and the Bounded Variation spaces of fractional order ss, denoted by BVs(a,b)BV^{s}(a,b): these spaces are studied with the aim of providing a suitable functional framework for fractional variational models in image analysis

    Riemann–Liouville Fractional Sobolev and Bounded Variation Spaces

    Get PDF
    none2noWe establish some properties of the bilateral Riemann–Liouville fractional derivative DsD^s. We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by Ws,1(a,b)W^{s,1}(a, b), and the fractional bounded variation spaces of fractional order s, denoted by BVs(a,b)BV^s(a, b). Examples, embeddings and compactness properties related to these spaces are addressed, aiming to set a functional framework suitable for fractional variational models for image analysis.openAntonio Leaci; Franco TomarelliLeaci, Antonio; Tomarelli, Franc

    Novel directed search strategy to detect continuous gravitational waves from neutron stars in low- and high-eccentricity binary systems

    Full text link
    We describe a novel, very fast and robust, directed search incoherent method for periodic gravitational waves (GWs) from neutron stars in binary systems. As directed search, we assume the source sky position to be known with enough accuracy, but all other parameters are supposed to be unknown. We exploit the frequency-modulation due to source orbital motion to unveil the signal signature by commencing from a collection of time and frequency peaks. We validate our pipeline adding 131 artificial continuous GW signals from pulsars in binary systems to simulated detector Gaussian noise, characterized by a power spectral density Sh = 4x10^-24 Hz^-1/2 in the frequency interval [70, 200] Hz, which is overall commensurate with the advanced detector design sensitivities. The pipeline detected 128 signals, and the weakest signal injected and detected has a GW strain amplitude of ~10^-24, assuming one month of gapless data collected by a single advanced detector. We also provide sensitivity estimations, which show that, for a single- detector data covering one month of observation time, depending on the source orbital Doppler modulation, we can detect signals with an amplitude of ~7x10^-25. By using three detectors, and one year of data, we would easily gain more than a factor 3 in sensitivity, translating into being able to detect weaker signals. We also discuss the parameter estimate proficiency of our method, as well as computational budget, which is extremely cheap. In fact, sifting one month of single-detector data and 131 Hz-wide frequency range takes roughly 2.4 CPU hours. Due to the high computational speed, the current procedure can be readily applied in ally-sky schemes, sieving in parallel as many sky positions as permitted by the available computational power

    Minimization of the buckling load of a clamped plate with perimeter constraint

    Full text link
    We look for minimizers of the buckling load problem with perimeter constraint in any dimension. In dimension 2, we show that the minimizing plates are convex; in higher dimension, by passing through a weaker formulation of the problem, we show that any optimal set is open and connected. For higher eigenvalues, we prove that minimizers exist among convex sets with prescribed perimeter

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure
    • …
    corecore