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We derive simple analytic expressions for the (coherent and semicoherent) phase metrics of continuous-
wave sources in low-eccentricity binary systems for the two regimes of long and short segments compared
to the orbital period. The resulting expressions correct and extend previous results found in the literature.
We present results of extensive Monte Carlo studies comparing metric mismatch predictions against the
measured loss of detection statistics for binary parameter offsets. The agreement is generally found to be
within ∼10%–30%. For an application of the metric template expressions, we estimate the optimal
achievable sensitivity of an Einstein@Home directed search for Scorpius X-1, under the assumption of
sufficiently small spin wandering. We find that such a search, using data from the upcoming advanced
detectors, would be able to beat the torque-balance level [R. V. Wagoner, Astrophys. J. 278, 345 (1984);
L. Bildsten, Astrophys. J. 501, L89 (1998).] up to a frequency of ∼500–600 Hz, if orbital eccentricity is
well constrained, and up to a frequency of ∼160–200 Hz for more conservative assumptions about the
uncertainty on orbital eccentricity.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are a promising
class of signals for the second-generation detectors cur-
rently under construction: advanced LIGO (aLIGO) [1],
advanced Virgo [2], and KAGRA [3]. These signals would
be emitted by spinning neutron stars (NSs) subject to
nonaxisymmetric deformations, such as quadrupolar defor-
mations (“mountains”), unstable oscillation modes (e.g.,
r modes), or free precession. For a general review of CW
sources and search methods, see, for example, Ref. [4].
A particularly interesting type of potential CW sources

are NSs in low-mass x-ray binaries (LMXBs), with
Scorpius X-1 being its most prominent representative
[5]. The accretion in these systems would be expected to
have spun up the NSs to the maximal rotation rate of
≳1000 Hz [6]. All the observations performed to date,
however, show they only spin at several hundred Hz, so
there seems to be something limiting the accretion-induced
spin up. A limiting mechanism that has been suggested is
the emission of gravitational waves [7–9], which would
result in steady-state CW emission in which the accretion
torque is balanced by the radiated angular momentum. For
a discussion of alternative explanations, see Refs. [8,9].

The resulting torque-balance CW amplitude increases with
the observed x-ray flux (independent of the distance of the
system; e.g., see Eq. (4) in Ref. [8]); therefore, the x-ray
brightest LMXB Scorpius X-1 is often considered the most
promising CW source within this category [5,10].
Several searches for CW signals from Scorpius X-1 have

been performed (without any detections) on data from initial
LIGO [11–13], and several new pipelines have been devel-
oped and are currently being tested in a Scorpius X-1 mock
data challenge (MDC) [10]. So far, all current methods fall
into either one of two extreme cases: highly coherent with a
short total time baseline (6 h inRef. [11], 10 d inRef. [13]), or
highly incoherent with a long total baseline but very short
(∼hours) coherent segments [12,14,15].
To increase sensitivity beyond these methods, and to be

able to effectively absorb large amounts of computing
power (such as those provided by Einstein@Home
[16,17]), it is necessary to extend the search approach into
the realm of general long-segment semicoherent methods,
by stacking coherent F -statistic segments [18–20]. Such
methods have already been employed over the past years
for both directed and all-sky searches for CWs from
isolated NSs [17,21,22], but they have not yet been
extended to the search for CWs from binary systems.
Key ingredients required for building a semicoherent

“StackSlide” search are the coherent and semicoherent
parameter-space metrics [18,23–25]. The coherent binary
CW metric was first analyzed in Ref. [26], and this was
further developed and extended to the semicoherent case in
Ref. [27]. Here, we will largely follow the approach of
Ref. [27], considering only low-eccentricity orbits and
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focusing on two different regimes of either long coherent
segments or short segments compared to the orbital period,
both of which admit simple analytic results.
This paper is organized as follows. Section II provides

a general introduction of the concepts and notation of
semicoherent StackSlide methods, parameter-space metric,
and template banks. Sections III–V build on the work of
Ref. [27], rectifying some of the results and extending them
to the case of a general orbital reference time. In Sec. VI,
we present the results of extensive Monte Carlo software-
injection tests comparing the metric predictions against the
measured loss in statistics due to parameter-space offsets.
Section VII applies the theoretical template-bank counts to
compute optimal StackSlide setups for a directed search for
Scorpius X-1 and estimates the resulting achievable sensi-
tivity. Finally, Sec. VIII presents concluding remarks.
Throughout the paper, we denote a quantityQ as ~Qwhen

referring to the coherent case and as Q̂when referring to the
semicoherent case.

II. BACKGROUND

The strain h in a given detector due to a continuous
gravitational wave is a scalar function hðt;A; λÞ, where t is
the time at the detector. The set of signal parameters A
denotes the four amplitude parameters, namely, the overall
amplitude h0, polarization angles cos ι and ψ , and the initial
phase ϕ0. The set of phase-evolution parameters λ consists
of all the remaining signal parameters affecting the time
evolution of the CW phase at the detector, notably the
signal frequency f, its frequency derivatives (also known as
“spindown” terms), sky-position of the source, and binary
orbital parameters. We will look in more detail at the phase
model in Sec. III.
The observed strain xðtÞ in the detector affected by

additive Gaussian noise nðtÞ can be written as
xðtÞ ¼ nðtÞ þ hðt;A; λÞ, and the detection problem con-
sists of distinguishing the (pure) “noise hypothesis” of
h0 ¼ 0 from the “signal hypothesis” h0 > 0.

A. Coherent detection statistic

As shown in Ref. [28], matched filtering the data xðtÞ
against a template hðt;A; λÞ, and analytically maximizing
over the unknown amplitude parameters A, results in the
coherent statistic ~F ðx; λÞ, which only depends on the data x
and on the template phase-evolution parameters λ. This
statistic follows a (noncentral) χ2 distribution with 4 degrees
of freedom and a noncentrality parameter ~ρ2ðA; λs; λÞ,
which depends on the signal parameters fA; λsg and the
template parameters λ. The quantity ~ρ (which depends
linearly on h0) is generally referred to as the signal-to-noise
ratio (SNR) of the coherent ~F statistic. The expectation
value of this statistic over noise realizations is given by [28]

E½2 ~F ðx; λÞ� ¼ 4þ ~ρ2ðA; λs; λÞ: ð1Þ

In the case of unknown signal parameters λs ∈ P within
some parameter space P, the number of required templates
λt that need to be searched is typically impractically large.
The maximal achievable sensitivity by this coherent sta-
tistic ~F ðx; λÞ is therefore severely limited [25] by the
required computing cost. It was shown that semicoherent
statistics generally result in better sensitivity at equal
computing cost (e.g., see Refs. [18,20]).

B. Semicoherent detection statistic

Here, we focus on one particular semicoherent approach,
sometimes referred to as StackSlide, which consists of
dividing the total amount of data Tobs into N segments of
duration ΔT, such that Tobs ¼ NΔT (in the ideal case
of gapless data). The coherent statistic ~F lðx; λÞ is then
computed over all segments l ¼ 1…N and combined
incoherently by summing1

F̂ ðx; λÞ≡XN
l¼1

~F lðx; λÞ: ð2Þ

This statistic follows a (noncentral) χ2 distribution with
4N degrees of freedom and a noncentrality parameter
ρ̂2ðA; λs; λÞ, which is found to be given by

ρ̂2 ¼
XN
l¼1

~ρ2l; ð3Þ

in terms of the per-segment coherent SNRs ~ρl. Note that
(contrary to the coherent case) ρ̂ cannot be regarded as a
semicoherent SNR. The expectation for F̂ is

E½2F̂ ðx; λÞ� ¼ 4N þ ρ̂2ðA; λs; λÞ: ð4Þ

C. Template banks and metric mismatch

To systematically search a parameter space P using a
statistic F ðx; λÞ (which here can refer either to the coherent
~F or the semicoherent F̂ ), we need to select a finite
sampling fλtg ⊂ P of the parameter space, commonly
referred to as a template bank, and compute the statistic
over this set of templates, i.e., fF ðx; λtÞg.
A signal with parameters λs ∈ P will generally not fall

on an exact template, and we therefore need to characterize
the loss of detection statistic F as a function of the offset

1This form of the “ideal” StackSlide statistic is not directly
used for actual searches. For reasons of computational cost, the
coherent statistics across segments are computed on coarser
template banks and are combined on a fine template bank by
summing across segments using interpolation on the coarse grids.
This is discussed in detail in Ref. [20] but is not relevant for the
present investigation.
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δλ ¼ λ − λs from a signal. This is generally quantified
using the expected statistic E½2F � of Eqs. (1) and (4),
namely, (by removing the bias 4N) as the relative loss in the
noncentrality ρ2,

μ0 ≡ ρ2ðA; λs; λsÞ − ρ2ðA; λs; λÞ
ρ2ðA; λs; λsÞ

; ð5Þ

which defines the measured F -statistic mismatch function.
This mismatch has a global minimum of μ0 ¼ 0 at λ ¼ λs
and is bounded within μ0 ∈ ½0; 1�.
We now use two standard approximations: (i) Taylor

expanding this up to second order in small offsets δλ and
(ii) neglecting the dependence on the amplitude parameters
A (the effect of which was analyzed in detail in Ref. [29]),
which leads to the well-known phase metric gij, namely,

μ0ðA; λs; λÞ ≈ μðλs; λÞ; where ð6Þ

μðλs; λÞ≡ gijðλsÞδλiδλj; ð7Þ

where gij is a positive-definite symmetric matrix and
implicit summation over repeated indices i; j is used.
The quality of this approximation will be quantified in a
Monte Carlo study in Sec. VI. The metric mismatch μ has a
global minimum of μ ¼ 0 at λ ¼ λs and (contrary to μ0) is
semiunbounded, i.e., μ ∈ ½0;∞Þ. Previous studies testing μ
against μ0 [29–31] for all-sky searches have shown that the
phase-metric approximation Eq. (6) works reasonably well
for observation times Tobs ≳Oð1 dÞ and for mismatch
values up to μ≲ 0.3–0.5. Above this mismatch regime, the
metric mismatch μ increasingly overestimates the actual
loss μ0. For example, in Ref. [29] an empirical fit for this
behavior was given as μ0ðμÞ ≈ μ − 0.38μ2.
The metric formalism was first introduced in

Refs. [23,24] (in the context of compact binary coalescence
signals) and was later applied to the CW problem in
Ref. [25], where it was shown that the coherent phase
metric ~gij can be expressed explicitly as

~gijðλÞ ¼ h∂iϕðλÞ∂jϕðλÞi − h∂iϕðλÞih∂jϕðλÞi; ð8Þ

where ∂iϕ≡ ∂ϕ=∂λi, with ϕðt; λÞ the CW signal phase,
and h…i denotes the time average over the coherence time
T, i.e., hQi≡ 1

T

R t0þT
t0 QðtÞdt.

The corresponding semicoherent phase metric ĝij was
first studied in Ref. [18] and was found to be expressible as
the average over all per-segment coherent phase metrics2

~gl;ij; i.e.,

ĝijðλÞ ¼ ~gijðλÞ; ð9Þ

where we defined the average operator over segments as

Q̄≡ 1

N

XN
l¼1

Ql: ð10Þ

The metric is useful for constructing template banks, by
providing a simple criterion for how “close” we need to
place templates in order to limit the maximal (relative) loss
in detection statistics, which can be written as

max
λs

min
λt

μðλs; λtÞ ≤ μmax: ð11Þ

This states that the worst-case mismatch to the closest
template over the whole template bank should be bounded
by a maximal value μmax. Note that each template λt
“covers” a parameter-space volume given by

μðλt; λÞ ¼ gijðλtÞδλiδλj ≤ μmax; ð12Þ
which describes an n-dimensional ellipsoid, where n is the
number of parameter-space dimensions. The template bank
can therefore be thought of as a covering of the whole
parameter space with such template ellipsoids, such that no
region of P remains uncovered. One can show [25,32,33]
that the resulting number of templatesN in such a template
bank is expressible as

N ¼ θnμ
−n=2
max

Z
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðλÞ

p
dnλ; ð13Þ

where n is the number of template-bank dimensions and θn
is the center density (also known as normalized thickness)
of the covering lattice, which quantifies the number of
lattice points per (metric) volume for a unit mismatch. The
center density is a geometric property of the lattice and for
the typical covering lattices used here is given by [32]

θn ¼
�
2−nnn=2 for Zn;ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p h
nðnþ2Þ
12ðnþ1Þ

i
n=2

for A�
n:

ð14Þ

An important caveat for using Eq. (13) is that the metric
determinant and integration must only include fully
resolved template-bank dimensions, which require more
than one template to cover the extent Δλi of the parameter
space along that dimension. We can estimate the per-
dimension template extents at given maximal mismatch
μmax as3

2This assumes constant SNR ~ρlðA; λs; λsÞ over all segments l,
which should be a good approximation for stationary noise and
sufficiently long segments, such that diurnal antenna-pattern
variations have averaged out.

3Note that the extra factor of 2 here compared to Ref. [5] is
required to account for the total extent of the ellipse, not just the
extent from the center. This can also be seen by considering that
the center density θZ1

¼ 1=2 in Eq. (13) for the one-dimensional
case.
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δλi ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μmax½g−1�ii

q
; ð15Þ

where ½g−1�ij are the elements of the inverse matrix to the
metric gij. We can therefore define the metric template-
bank “thickness” along dimension i in terms of the
corresponding effective number of templates along that
direction as

N λi ≡ Δλi

δλi
: ð16Þ

For dimensions λi with N λi ≤ 1, we must exclude this
coordinate from the bulk template-counting formula,
Eq. (13), as it would effectively contribute “fractional
templates” and thereby incorrectly reduce the total template
count.

III. BINARY CW PHASE

A. General phase model

The general CW phase model assumes a slowly spin-
ning-down NS with rotation rate νðτÞ and a quadrupolar
deformation resulting in the emission of CWs. The phase
evolution can therefore be expressed as a Taylor series in
the NS source frame as

ϕsrcðτÞ ¼ 2π

�
fðτ − trefÞ þ

1

2
_fðτ − trefÞ2 þ � � �

�
; ð17Þ

where tref denotes the reference time and f; _f; f̈;… are the
CW frequency and spindown parameters. These are defined
as

fðkÞ ≡ σ
dkνðτÞ
dτk

����
τ¼tref

; ð18Þ

where σ is a model-dependent constant relating the instan-
taneous CW frequency fðτÞ to the NS spin frequency νðτÞ.
For example, for a quadrupolar deformation rotating
rigidly with the NS (mountain), we have σ¼2 [8,9,34–36],
while for r modes, σ ≈ 4=3 [8,37,38], and for precession,
σ ≈ 1 [39,40].
To relate the CW phase in the source frame to the phase

ϕðtarrÞ in the detector frame needed for Eq. (8), we need to
relate the wavefront detector arrival time tarr to its source
emission time τ, i.e., τðtarrÞ, such that ϕðtarrÞ¼ϕsrcðτðtarrÞÞ.
Neglecting relativistic wave-propagation effects4 (such as
Einstein and Shapiro delays; e.g., see Refs. [41,42] for
more details), we can write this as

τðtarrÞ ¼ tarr þ
~rðtarrÞ · ~n

c
−
d
c
−
RðτÞ
c

; ð19Þ

where ~r is the vector from Solar System barycenter (SSB)
to the detector; c is the speed of light; d is the (generally
unknown) distance between the SSB and the binary bary-
center (BB); R is the radial distance of the CW-emitting NS
from the BB along the line of sight, where R > 0means the
NS is further away from us than the BB; and ~n is the unit
vector pointing from the SSB to the source. In standard
equatorial coordinates with right ascension α and declina-
tion δ, the components of the unit vector ~n are given
by ~n ¼ ðcos α cos δ; sin α cos δ; sin δÞ.
The projected radial distanceR along the line of sight can

be expressed (e.g., see Ref. [43]) as

R ¼ y sin i sinðωþ υÞ; ð20Þ

where y is the distance of the NS from the BB, i is the
inclination angle between the orbital plane and the sky, ω is
the argument of periapse, and υ is the true anomaly (i.e.,
the angle from the periapse to the current NS location
around the BB). We further approximate the orbital motion
as a pure Keplerian ellipse, which can be described as

yðυÞ ¼ að1 − e2Þ
1þ e cos υ

; ð21Þ

in terms of the semimajor axis a and the eccentricity e. The
ellipse can be written equivalently in terms of the eccentric
anomaly E, namely,

yðEÞ ¼ að1 − e cosEÞ; ð22Þ

and the dynamics is described by Kepler’s equation,
namely,

τ − tp ¼
P
2π

ðE − e sinEÞ; ð23Þ

which provides a (transcendental) relation for EðτÞ.
Combining Eqs. (20), (21), and (22), we can rewrite the
projected radial distance R in terms of E, namely,

R
c
¼ ap

�
sinωðcosE − eÞ þ cosω sinE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
; ð24Þ

where we defined ap ≡ a sin i=c. Combining this with
Eq. (23) fully determines (albeit only implicitly) the func-
tional relationRðτÞ required for the timingmodel of Eq. (19).
Dropping the unknown distance d to the BB (which is

equivalent to redefining the intrinsic spindown parameters),
and defining the SSB wavefront arrival time tSSB as

tSSBðtarr; ~nÞ≡ tarr þ
~rðtarrÞ · ~n

c
; ð25Þ

4These effects are taken into account in the actual matched-
filtering search codes but are negligible for the calculation of the
metric.

PAOLA LEACI AND REINHARD PRIX PHYSICAL REVIEW D 91, 102003 (2015)

102003-4



we can rewrite the timing relation, Eq. (19), as

τðtSSBÞ ¼ tSSB −
RðτÞ
c

: ð26Þ

Here, we are interested only in binary systems with
known sky-position ~n, and we can therefore change
integration variables from t to tSSB in the phase for the
metric integration of Eq. (8). Furthermore, given that the
Earth’s Rømer delay is bounded by j~r · ~n=cj≲ 500 s, and
jdtSSB=dtj≲ 10−4, this difference will be negligible for the
metric and can be dropped. This is equivalent to effectively
placing us into the SSB, which is always possible for
known ~n. To simplify the notation, we now simply
write t≡ tSSB.
Plugging this timing model into the phase of Eq. (17),

we obtain5

ϕðtÞ ≈ 2π

�
f

�
Δt −

R
c

�
þ 1

2
_f

�
Δt −

R
c

�
2

þ � � �
�
; ð27Þ

with Δt≡ t − tref . The binary systems in which we are
interested have a semimajor axis ap of orderOð1–10Þ s and
binary periods P of the order of several hours. Hence, the
change in E, and therefore RðEÞ, during the time R=c will
be negligible, and so we can approximate EðτÞ ≈ EðtÞ,
namely,

t − tp ≈
P
2π

ðE − e sinEÞ: ð28Þ

For the purpose of calculating the metric using Eq. (8), we
can further approximate the phase model in the standard
way (e.g., see Refs. [28,30]) as

ϕðtÞ ≈ 2π

��
fΔtþ 1

2!
_fΔt2 þ � � �

�
−
RðtÞ
c

f̄

�
; ð29Þ

where we expanded the factors ðΔt − R=cÞk and kept only
the leading-order terms in Δt, keeping in mind that Δt ∼
T ≳OðdÞ and R=c ∼OðsecondsÞ, where T denotes
the coherence time. In the last term, we replaced the
instantaneous intrinsic CW frequency as a function of t
by a constant parameter f̄; namely, we approximated
f̄ ≈ ðf þ _fΔtþ � � �Þ. This “frequency scale” f̄ of the signal
could be chosen as the average (or the largest) intrinsic CW
frequency of this phase model over the coherence time T.
Given that this only enters as a scale parameter in the
metric, and the changes of intrinsic frequency over the
observation time will generally be small, this introduces
only a negligible difference.

B. Small-eccentricity approximation (e ≪ 1)

We follow the approach of Ref. [27] and consider only
the small-eccentricity limit of the metric. Hence, by Taylor
expanding Eqs. (24) and (28) up to leading order in e,
i.e., inserting EðtÞ ¼ E0ðtÞ þ eE1ðtÞ þ � � � into Kepler’s
equation, Eq. (28), we obtain

E0ðtÞ ¼ Ωðt − tpÞ; ð30Þ

E1ðtÞ ¼ sinE0ðtÞ; ð31Þ

whereΩ≡ 2π
P is themean orbital angular velocity. Plugging

this into Eq. (24), we obtain the Rømer delay of the binary
to leading order in e as

R
c
¼ ap

�
sinψðtÞ þ κ

2
sin 2ψðtÞ − η

2
cos 2ψðtÞ

�
; ð32Þ

where a constant term −3apη=2 was omitted, which is
irrelevant for the metric. We use the standard Laplace–
Lagrange parameters defined as

κ ≡ e cosðωÞ; ð33Þ

η≡ e sinðωÞ ð34Þ

and the mean orbital phase,

ψðtÞ≡Ωðt − tascÞ; ð35Þ

measured from the time of ascending node tasc, which (for
small e) is related to tp by [41]

tasc ≡ tp −
ω

Ω
ð36Þ

and which (contrary to the time of periapse tp) remains well
defined even in the limit of circular orbits.
The small-eccentricity phase model is therefore para-

metrized by the five binary parameters fap; tasc;Ω; κ; ηg
(referred to as the “ELL1” model in Refs. [41,42]), and in
the circular case (e ¼ 0), this reduces to the three binary
parameters fap; tasc;Ωg with κ ¼ η ¼ 0.

IV. BINARY CW METRIC

A. Phase derivatives

Following Refs. [26,27], we restrict our investigation
to (approximately) constant-frequency CW signals, i.e.,
fðk>0Þ ¼ 0. This is motivated by the assumed steady-state
torque-balance situation in LMXBs, which are our main
target of interest. However, the corresponding fluctuations
in the accretion rate are expected to cause some stochastic
frequency drift, and one will therefore need to be careful to
restrict the maximal coherence time in order to limit the

5The sign on R (and equivalently on ap) here agrees with
Eq. (2.26) in Ref. [44] but differs from Eq. (2) in Ref. [27], which
is incorrect.
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frequency resolution. This will be discussed in more detail
in the application to Scorpius X-1 in Sec. VII. The total
phase-evolution parameter space considered here is there-
fore spanned by the following six coordinates:

λ ¼ ff; ap; tasc;Ω; κ; ηg: ð37Þ

The small-eccentricity phase model used here can now be
explicitly written as

ϕðt;λÞ
2π

≈fΔt− f̄ap

�
sinψþκ

2
sin2ψ −

η

2
cos2ψ

�
; ð38Þ

with ψ ≡ ψðtÞ given by Eq. (35). The frequency parameter
f̄ is treated as a constant in the phase derivative ∂fϕ
(which corresponds to neglecting the small correction
ap ≪ Δt ∼ T), but numerically we have f̄ ¼ f in the
present constant-frequency case without spindowns.
Hence, we obtain the phase derivatives

∂fϕ

2π
≈ Δt;

∂apϕ

2π
¼ −f̄

�
sinψ þ κ

2
sin 2ψ −

η

2
cos 2ψ

�
;

∂tascϕ

2π
¼ f̄apΩ½cosψ þ κ cos 2ψ þ η sin 2ψ �;

∂Ωϕ

2π
¼ −f̄apðt − tascÞ½cosψ þ κ cos 2ψ þ η sin 2ψ �;

∂κϕ

2π
¼ −

1

2
f̄ap sin 2ψ ;

∂ηϕ

2π
¼ 1

2
f̄ap cos 2ψ ; ð39Þ

which are inserted into Eq. (8) in order to obtain the
coherent metric. The semicoherent metric is obtained by
averaging the coherent metrics over segments according
to Eq. (9).
The resulting analytic expressions for these metrics in the

general case are quite uninstructive and unwieldy, while it is
straightforward to compute them numerically for any case of
interest. However, as noticed in previous investigations
[26,27], it is instructive to focus on two limiting regimes
that yield particularly simple analytical results, namely,
the long-segment limit (LS) in which ΔT ≫ P and the
short-segment limit (SS) in which ΔT ≪ P.
When taking these limits on the metric gij, in order to

decide whether a particular off-diagonal term is negligible
or not, it is useful to consider the diagonal-rescaled metric

gDNij ≡ gijffiffiffiffiffiffiffiffiffiffigiigjj
p ; ð40Þ

which is dimensionless and has unit diagonal gDNii ¼ 1.
In this rescaled metric, we can then naturally neglect

off-diagonal terms if they satisfy gDNij ≪ 1, as their corre-
sponding contribution to the metric mismatch of Eq. (12)
will then be negligible.

B. Long-segment regime (ΔT ≫ P)

1. Coherent metric ~gLS

As noted in Ref. [27], it is convenient to use the discrete
gauge freedom in the choice of the orbital reference epoch
tasc, as we can choose the time of ascending node during
any orbit. Therefore, we can add any integer multiple p of a
period and redefine

t0asc ¼ tasc þ p
2π

Ω
; p ∈ Z; ð41Þ

without changing the system. An (infinitesimal) offset (or
“uncertainty”) δtasc changes under such a transformation in
the presence of an (infinitesimal) offset on the period, i.e., if
δΩ ≠ 0, namely,

δt0asc ¼ δtasc − p
2π

Ω2
δΩ: ð42Þ

All other coordinate offsets are unaffected by this change of
orbital reference epoch. This needs to be carefully taken
into account in the metric when redefining tasc. Namely,
given that this is a pure “relabeling” of the same physical
situation, the corresponding metric mismatch must be
invariant, i.e.,

μ ¼ δλ0mg0mbδλ
0b

¼ δλi
�∂λ0m
∂λi g

0
mb

∂λ0b
∂λj

�
δλj

¼ δλigijδλj; ð43Þ

where the only nonzero components of the Jacobian of this
coordinate transformation Eq. (41) are

∂λ0i
∂λi ¼ 1; and

∂t0asc
∂Ω ¼ −p

2π

Ω2
: ð44Þ

In the long-segment limit, these discrete steps P ¼ 2π=Ω
are assumed to be small compared to the segment length
ΔT. We can therefore choose the time of ascending node to
be approximately at the segment midtime tmid; i.e., we
consider the special gauge choice t0asc ≈ tmid, in which the
phase derivatives, Eq. (39), are time symmetric around tmid,
which simplifies the metric calculation. Introducing the
time offset

Δma ≡ tmid − tasc; ð45Þ
we therefore consider first the special case
~gLSmid;ij ≡ ~gLSij ðΔma ¼ 0Þ.
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Keeping only leading-order terms in ΩΔT ≫ 2π, and up
to first order in e (i.e., first order in κ and η), we obtain the
diagonal metric

~gLSmid;ii¼2π2
�
ΔT2

6
; f̄2;ðf̄apΩÞ2;

ðf̄apΔTÞ2
12

;
ðf̄apÞ2

4
;
ðf̄apÞ2

4

�
;

ð46Þ

in agreement with the result of Eq. (30) of Ref. [27].
The general case ofΔma ≠ 0 can be obtained by applying

the Jacobian6 of Eq. (44) with Δma ¼ p2π=Ω, and so
t0asc ¼ tasc þ Δma and ∂t0asc=∂Ω ¼ −Δma=Ω, resulting in the
general coherent long-segment metric ~gLSij ðΔmaÞ with
components

~gLSff ¼ π2
ΔT2

3
;

~gLSapap ¼ 2π2f̄2;

~gLStasctasc ¼ 2π2ðf̄apΩÞ2;

~gLSΩΩ ¼ 2π2ðf̄apÞ2
�
ΔT2

12
þ Δ2

ma

�
;

~gLSΩtasc ¼ ~gLStascΩ ¼ −2π2ðf̄apÞ2ΩΔma;

~gLSκκ ¼ ~gLSηη ¼ π2

2
ðf̄apÞ2; ð47Þ

while all other off-diagonal terms are (approximately) zero
in this limit. The nonzero off-diagonal term shows that in
general (i.e., for Δma ≠ 0) there are correlations between
offsets in tasc and Ω, introduced by Eq. (42). This general-
izes the result in Ref. [27] to arbitrary choices of orbital
reference epoch tasc.

2. Semicoherent metric ĝLS

To compute the semicoherent metric, we only need to
average the per-segment coherent metrics of the previous
sections over segments according to Eq. (9). Here, it is
crucial to realize that all segment metrics must use the same
coordinates λ in order for this averaging expression to
apply; in particular, we can only fix the gauge on tasc once
for all segments, and so generally Δma;l ≠ 0. This means
we cannot use the special form of ~gLSmid of Eq. (46) for
the average over all segments, as done in Ref. [27],
which would result in the erroneous conclusion that the
semicoherent metric ĝLS would be identical to the coherent
one. Instead, using Eq. (9), we find by averaging the per-
segment metrics ~gLSl ≡ ~gLSðΔma;lÞ

ĝLSff ¼ π2
ΔT2

3
;

ĝLSapap ¼ 2π2f̄2;

ĝLStasctasc ¼ 2π2ðf̄apΩÞ2;

ĝLSΩΩ ¼ 2π2ðf̄apÞ2
�
ΔT2

12
þ Δ2

ma

�
;

ĝLSΩtasc ¼ ĝLStascΩ ¼ −2π2ðf̄apÞ2ΩΔma;

ĝLSκκ ¼ ĝLSηη ¼ π2

2
ðf̄apÞ2: ð48Þ

It is interesting to consider the ideal case of N regularly
spaced segments without gaps, i.e., Tobs ¼ NΔT, and

Δma;l ¼ ðtmid − tascÞ þ
�
l −

N þ 1

2

�
ΔT; ð49Þ

resulting in the first two moments

Δma ¼ tmid − tasc; ð50Þ

Δ2
ma ¼ Δma

2 þ 1

12
ðN2 − 1ÞΔT2; ð51Þ

where tmid is the average midtime over all segments. In this
case, we can write the variance of fΔma;lg as

var½Δma�≡ Δ2
ma − Δma

2 ¼ 1

12
ðN2 − 1ÞΔT2: ð52Þ

If we use the gauge freedom and choose tasc ≈ tmid, then

Δma ≈ 0, and Δ2
ma ≈ ðN2 − 1ÞΔT2=12, so that in this case

the metric is again diagonal, and the only component
different from the coherent metric ~gLSmid is

ĝLSΩΩ ¼ π2
ðf̄apÞ2

6
ðNΔTÞ2 ∝ T2

obs; ð53Þ

corresponding to a refinement in the Ω coordinate.
Therefore, the semicoherent template-bank spacing in Ω
needs to be finer by a factor of N compared to coherent
spacing in order to achieve the same mismatch. The
existence of this metric refinement in Ω in the long-segment
limit had been noticed earlier [45] and was also used in the
discovery of a binary pulsar in Fermi LAT data [46].

C. Short-segment regime (ΔT ≪ P)

1. Coherent metric ~gSS

In the case of very short coherent segments compared to
the period, i.e., ΩΔT ≪ 2π, as pointed out in Ref. [27],
strong parameter-space degeneracies render the metric in
these coordinates quite impractical for template-bank gen-
eration, and we therefore follow their approach of Taylor

6A direct but somewhat more complicated calculation of the
metric at Δma ≠ 0 yields the same result.
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expanding the phase around the midpoint tmid of the
coherent observation time, namely,

ϕðtÞ ¼ 2π
Xn
k¼1

uk
k!

ðt − tmidÞk; ð54Þ

omitting a constant term.
The u coordinates fukg are defined as the kth time

derivatives of the phase at tmid, namely,

uk ≡ 1

2π
∂k
tϕðtÞjtmid

: ð55Þ

Note that the phase model of Eq. (54) is formally identical
to the phase in terms of the frequency and spindowns ffðkÞg
of an isolated NS (with tmid playing the role of the reference
time tref ), as can be seen in Eq. (29). The corresponding
“spindown metric” has a well-known analytical form,
which can be expressed most conveniently in terms of
the rescaled dimensionless v coordinates,

vk ≡ 2π
uk
k!

�
ΔT
2

�
k
; ð56Þ

resulting in the v-coordinate metric

~gSS;vkk0 ¼ ðkþ k0 − 1Þmod2
kþ k0 þ 1

−
½ðk − 1Þmod2�½ðk0 − 1Þmod2�

ðkþ 1Þðk0 þ 1Þ

¼

0
BBBBBBBB@

1
3

0 1
5

0 …

0 4
45

0 8
105

…
1
5

0 1
7

0 …

0 8
105

0 16
225

…

..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCA
; ð57Þ

correcting the incorrect expression of Eq. (21) of Ref. [27].
Applying Eq. (55) to the small-eccentricity phase of

Eq. (38), we obtain the following expressions

u1 ¼ −f̄apΩ½cosψm þ κ cos 2ψm þ η sin 2ψm� þ f;

u2 ¼ f̄apΩ2½sinψm þ 2κ sin 2ψm − 2η cos 2ψm�;
u3 ¼ f̄apΩ3½cosψm þ 4κ cos 2ψm þ 4η sin 2ψm�;
u4 ¼ −f̄apΩ4½sinψm þ 8κ sin 2ψm − 8η cos 2ψm�;
u5 ¼ −f̄apΩ5½cosψm þ 16κ cos 2ψm þ 16η sin 2ψm�;
u6 ¼ f̄apΩ6½sinψm þ 32κ sin 2ψm − 32η cos 2ψm�;
..
. ð58Þ

with ψm ≡ ψðtmidÞ, which differ in the sign of ap compared
to Eqs. (A2)–(A5) of Ref. [27], due to the sign error on R in
the phase model discussed in Sec. III A.

Note that for the general elliptical case we expect six
independent u coordinates uðλÞ and four in the circular
case. The nonlinear coordinate transformation Eq. (58) can
be analytically inverted to obtain λðuÞ, as shown explicitly
in Appendix A.
We follow Ref. [27] in estimating the range of validity of

this Taylor approximation up to order n by considering the
order of magnitude of the first neglected term of order
nþ 1, namely,

jΔϕj ∼ 2π
unþ1

ðnþ 1Þ!
�
ΔT
2

�
nþ1

;

∼ 2πf̄ap
ðπxÞnþ1

ðnþ 1Þ! ; ð59Þ

where we defined the fraction x of an orbit swept during the
segment duration, i.e., x≡ΩΔT=ð2πÞ ¼ ΔT=P. To link
this phase error to a mismatch, we observe that here Δϕ ∼
Δvnþ1 of Eq. (56), and the corresponding metric element of
Eq. (57) gives ~gSS;vðnþ1Þ;ðnþ1Þ ∼

1
2nþ3

for n ≫ 1, and therefore

μ ∼
Δϕ2

2nþ 3
¼ ð2f̄apÞ2

ðπxÞ2ðnþ1Þ

ð2nþ 3Þðnþ 1Þ!2 : ð60Þ

Plugging in typical values used in the numerical tests later,
e.g., f̄ ∼ 500 Hz, ap ∼ 3 s, n ¼ 6, we see that the mismatch
grows very rapidly from μ ≪ 1 at x≲ 0.25 to μ ∼ 1 at
x ∼ 0.35. We therefore expect this approximation with
n ¼ 6 to typically hold for segment durations up to one-
fourth to one-third of an orbit.

2. Semicoherent metric ĝSS

While the segments ΔT are assumed to be short
compared to the period P, we only consider the case in
which the total observation time is long compared to P; i.e.,
in addition to ΔT ≪ P, we also assume Tobs ¼ NΔT ≫ P,
which also implies N ≫ 1.
We cannot directly use the coherent per-segment metrics

in u coordinates to compute the semicoherent metric as an
average using Eq. (9) because a fixed physical parameter-
space point λ would have different u coordinates in each
segment.
Instead, as first shown in Ref. [27], one can go back to

physical coordinates and use the fact that N ≫ 1 to replace
the discrete sum in Eq. (9) over segments by an integral
over time, namely,

ĝSS ¼ 1

N

XN
l¼1

~gSSðtmid;lÞ

≈
N≫1 1

Tobs

Z
tmidþTobs=2

tmid−Tobs=2
~gSSðt0Þdt0; ð61Þ

in terms of coherent per-segment metrics ~gSSðtmid;lÞ
expressed as a function of the segment midtimes tmid;l
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and where tmid is the midtime of the whole observation. To
compute this, we first calculate the coherent metric of
Eq. (8) for each segment ½tmid;l − ΔT=2; tmid;l þ ΔT=2� by
using the phase derivatives of Eq. (39). As before, we keep
only first-order terms in e (i.e., first-order in κ; η), then
Taylor expand the results inΩΔT ≪ 2π up to second order,
obtaining ~gSSðtmid;lÞ. This is integrated over the total
observation time according to Eq. (61), and only leading-
order terms in ΩTobs ≫ 2π are kept. We only keep off-
diagonal terms where the corresponding diagonal-rescaled
elements, Eq. (40), are not≪ 1. The resulting semicoherent
short-segment long-observation limit metric elements are
found as

ĝSSff ¼ π2
ΔT2

3
;

ĝSSapap ¼
π2

6
ðΩΔTÞ2f̄2;

ĝSStasctasc ¼
π2

6
ðΩΔTÞ2ðf̄apΩÞ2;

ĝSSΩΩ ¼ π2

6
ðΩΔTÞ2ðf̄apÞ2

�
T2
obs

12
þ Δma

2

�
;

ĝSSΩtasc ¼ ĝSStascΩ ¼ −
π2

6
ðΩΔTÞ2ðf̄apÞ2ΩΔma:

ĝSSκκ ¼ ĝSSηη ¼ π2

6
ðΩΔTÞ2ðf̄apÞ2; ð62Þ

which generalizes the result in Ref. [27] (for gauge choice
tasc ≈ tmid, i.e., Δma ≈ 0) to the general case of Δma ≠ 0.
Note that a more general form encompassing the semi-

coherent metric in both the short-segment and long-
segment limits has recently found in Ref. [47].

V. NUMBER OF TEMPLATES

To express the explicit template counts based on
Eq. (13), we will assume a simple parameter space P
bounded by f̄ ∈ ½f̄min; f̄max�, ap ∈ ½apmin; apmax�, tasc ∈
½tascmin; tascmax�, Ω ∈ ½Ωmin;Ωmax�, e ∈ ½emin; emax�, and
ω ∈ ½ωmin;ωmax�. Using Eqs. (33) and (34), we see thatZ Z

dκdη ¼
Z Z

ededω: ð63Þ

Observing that gκκ ¼ gηη, we can further obtain
μ ¼ gκκdκ2 þ gηηdη2 ¼ gκκðde2 þ e2dω2Þ, which implies

gee ¼ gκκ; gωω ¼ e2gκκ; geω ¼ 0: ð64Þ

For convenience of notation, for the following template-
count expressions, we define the shorthand

jQ�≡Qmax −Qmin: ð65Þ

A. Templates N LS in the long-segment regime

The determinant of the semicoherent metric ĝLS of
Eq. (48) only differs from that of the coherent metric
~gLS of Eq. (47) by the presence of a refinement factor γ, i.e.,

det ĝLS ¼ γ2 det ~gLS; with ð66Þ

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

var½Δma�
ΔT2

r
¼gapless

N; ð67Þ

where the last equality holds in the special case of N
segments without gaps, as seen from Eq. (52). This
refinement only affects the Ω dimension. In particular,
for the gauge choice Δma ¼ 0, we see

ĝLSmid;ΩΩ ¼ γ2 ~gLSmid;ΩΩ: ð68Þ

The determinant Eq. (66) is seen to be independent of the
gauge choice on tasc (i.e., on Δma), and we can therefore
write the template volume density in factored form as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gLS

q
dnλ ¼

Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
gLSmid;ii

q
dλi: ð69Þ

This independence ofΔma in the volume element may seem
surprising at first, as one would expect [48] the parameter-
space uncertainty on tasc to grow with increasing separation
from the observation time tmid ¼ tasc þ Δma, if there is any
uncertainty dΩ in the mean angular velocity, as also
discussed in Sec. IV B. However, this is only the case if
the uncertainty in Ω is not resolved by the template bank,
when one observes indeed a stretching of the effective
(projected) uncertainty in tasc, resulting in an increase in
required templates N tasc . On the other hand, if the Ω − tasc
parameter space is fully resolved by the metric [as assumed
in Eq. (69)], there is no increase of templates. Changing
Δma only deforms theΩ − tasc parameter space in a volume-
preserving way by shear according to Eq. (41). Given that
any offset in tasc and Ω results in a deterministically shifted
offset t0asc, there is no loss of information, and therefore no
increase in the number of templates. Alternatively, one can
consider the orbital epoch tasc with its uncertainty fixed at
its original measurement epoch and account for the offset
Δma in the metric as done in Sec. IV B. This results in
changing metric correlations between tasc and Ω while
leaving the ellipse volume unchanged.
The expression for the number of templates per dimen-

sion N λi of Eqs. (15) and (16) simplifies to

N LS
λi

¼ 1

2
μ−1=2max

ffiffiffiffiffiffiffiffiffiffiffi
gLSmid;ii

q
Δλi; ð70Þ

with individual components in coordinates λi ¼
ff; ap; tasc;Ω; eg given by

DIRECTED SEARCHES FOR CONTINUOUS … PHYSICAL REVIEW D 91, 102003 (2015)

102003-9



ffiffiffiffiffiffiffiffiffiffiffi
gLSmid;ii

q
¼ π

ffiffiffi
2

p �
ΔTffiffiffi
6

p ; f̄; f̄apΩ; f̄ap
γΔTffiffiffiffiffi
12

p ;
f̄ap
2

�
; ð71Þ

noting that gee ¼ gκκ ¼ gηη and gωω ¼ e2gee. In practice,
one often encounters cases in which the parameter uncer-
tainty along some of these dimensions is smaller than the
metric resolution, such that a single template covers the
whole extent of the parameter space along that direction. In
this case, the corresponding coordinate contribution to the
template density would result in fractional templates (and
therefore underestimate the number of templates) and must
not be included in Eq. (13), as discussed in Sec. II C.
The number of templates over the full six-dimensional

parameter space ff; ap; tasc;Ω; e;ωg, according to Eq. (13),
is obtained as

N LS ¼ θ6
μ3max

π6γΔT2

360
ffiffiffi
2

p jf̄6�ja5p�jtasc�jΩ2�je2�jω�: ð72Þ

In the application to Scorpius X-1, a few special cases will
be of interest, namely, when one or more of the uncer-
tainties in orbital parameters are smaller than the template
extent.
For sufficiently well-estimated orbital angular velocity

Ω ¼ Ω0 (such that N Ω < 1), the template count for the
corresponding five-dimensional template bank over
ff; ap; tasc; e;ωg is found as

N LS ¼ θ5

μ5=2max

π5ΔT
40

ffiffiffi
3

p Ω0jf̄5�ja4p�jtasc�je2�jω�; ð73Þ

while in the four-dimensional case of well-estimated e and
ω (or equivalently, for circular orbits) ff; ap; tasc;Ωg, we
obtain

N LS ¼ θ4
μ2max

π4γΔT2

36
ffiffiffi
2

p jf̄4�ja3p�jtasc�jΩ2�. ð74Þ

Finally, in the three-dimensional circular case with well-
determined Ω ¼ Ω0, e, and ω, we find the template count
over the remaining parameter space ff; ap; tascg as

N LS ¼ θ3

μ3=2max

π3ΔTffiffiffiffiffi
27

p Ω0jf̄3�ja2p�jtasc�: ð75Þ

We note that Eqs. (71)–(75) are valid for the semicoherent
case with general refinement γ, as well as for the coherent
case with γ ¼ 1.

B. Templates N SS in the short-segment regime

Because of the nonlinear transformation Eq. (58) from
physical parameters λ into u coordinates, the physical
parameter space P would be described by complicated
integration boundaries in u. In addition, the number of
dimensions in u coordinates that need to be included in

the template bank is a nontrivial function of the signal
parameters and the mismatch μmax (e.g., as seen later in
Fig. 3). These effects would dominate the expression for the
number of templates, Eq. (13), and it is therefore not clear
whether a useful closed analytical form can be given.
Using the metric volume density for the semicoherent

short-segment metric ĝSS of Eq. (62), we obtain the number
of templates, Eq. (13), for the full six-dimensional template
bank,

N̂ SS ¼ θ6
μ3max

π6ΔT6Tobs

90720
ffiffiffi
6

p jf̄6�ja5p�jtasc�jΩ7�je2�jω�; ð76Þ

while in the four-dimensional circular case, we find

N̂ SS ¼ θ4
μ2max

π4ΔT4Tobs

2160
ffiffiffi
6

p jf̄4�ja3p�jtasc�jΩ5�: ð77Þ

VI. NUMERICAL TESTS OF THE METRICS

In this section, we present numerical tests performed
on the parameter-space metrics derived in the previous
sections. These tests consist of comparing the predicted
metric mismatches μ of Eq. (7) against measuredF -statistic
mismatches μ0 of Eq. (5) obtained via signal software
injections. The quantity used for this comparison is the
(symmetric) relative difference [29–31], defined as

εðμ0; μÞ≡ μ0 − μ

0.5ðμ0 þ μÞ ; ð78Þ

which is bounded within ε ∈ ½−2; 2�. For small values
jεj ≪ 1, this agrees with the asymmetric definitions of
relative errors, such as ε0 ≡ ðμ0 − μÞ=μ0, with domain
ε0 ∈ ð−∞; 1�, and which is related to the symmetric relative
difference ε as ε0 ¼ ε

1þε=2.

A. Monte Carlo software-injection method

The general algorithm used for these software-injection
tests is the following:
(1) Pick random signal amplitude parameters A and

phase-evolution parameters λs from suitable priors.
(2) Generate a phase-parameter offset δλ ¼ λt − λs by

finding the closest lattice template λt to the signal
point λs.

(3) Compute the phase metric gijðλsÞ and metric mis-
match μðλs; λtÞ ¼ gijδλiδλj according to Eq. (7).

(4) Generate a (noise-free) data set containing the signal
x ¼ hðt;A; λsÞ. Compute the (coherent or semico-
herent) F statistic at the injection point, F ðx; λsÞ,
and at the template, F ðx; λtÞ. In noise-free data, we
have F ðx; λÞ ¼ E½F ðx; λÞ�, and therefore we can
obtain ρ2ðA; λs; λÞ via Eq. (1) or Eq. (4), respec-
tively, which yields the measured mismatch μ0 via
Eq. (5). Injection and recovery are performed using
the LALSuite software package [49].
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This procedure is applied to test each of the four types of
the metric detailed in Secs. IV B and IV C.

1. Choice of signal parameters fA;λsg
The random signal amplitude parameters A are chosen

as follows: the scalar amplitude h0 plays no role for the
metric and is fixed to h0 ¼ 1. The inclination angle is
drawn from a uniform distribution in cos ι ∈ ½−1; 1�, the
polarization angle within ψ ∈ ½0; 2π�, and the (irrelevant)
initial phase within ϕ0 ∈ ½0; 2π�.
The sky position for all signals is fixed (without loss

of generality) to that of Scorpius X-1, namely, ðα; δÞ ¼
ð4.276;−0.273Þ rad, and we assume gapless data from the
LIGO Hanford detector (H) [1].
The random signal phase-evolution parameters λs ∈ P

are generated by drawing them from uniform distributions
over the ranges:

f ∈ ½50; 1000� Hz;

ap ≡ a sin i
c

∈ ½1; 5� s;
P ∈ ½P0 − dP; P0 þ dP�;

tp ∈
�
tmid −

P
2
; tmid þ

P
2

�
;

log10e ∈ ½−5; log10ð0.9Þ�;
ω ∈ ½0; 2π� rad: ð79Þ

The orbital period “scale” P0 is fixed for each set of
software injections (specified later), while the correspond-
ing sampling range dP ¼ P2

0dΩ=ð2πÞ is given in terms of a
range dΩ in orbital angular velocity, which is chosen as
dΩ ∼ 1=

ffiffiffiffiffiffiffiffi
gΩΩ

p
, corresponding to a roughly unity mismatch

alongΩ. The motivation for this construction is twofold: on
one hand, we need to control the scale of the orbital period
in order to ensure the appropriate short-segment (ΔT ≪ P)
or long-segment (ΔT ≫ P) limit is satisfied in the tests, and
on the other hand, we wish to randomize the period over a
range larger than the typical template-bank spacings in
order to fully sample the Wigner–Seitz cell of the tem-
plate bank.
For the metric tests presented in this section, we employ

a demodulation method of computing the F statistic, using
short Fourier transforms (SFTs) of length Tsft ¼ 5 s.
Because of the linear phase model over each SFTemployed
by the search code, this corresponds to a maximum error in
phase of jΔϕj ∼ 0.07 rad over the investigated parameter
space (see Appendix C for more details).

2. Generating template-bank offsets δλ

Sampling suitable offsets δλ for metric testing has
proved to be a subtle and difficult point in previous metric
studies [29,30]. Here, we employ a recent innovation for

generating “natural” offsets from a virtual template bank
(e.g., see Ref. [31] for more details). This method can be
applied whenever the metric gij is constant (i.e., indepen-
dent of λ), which allows for constructing a lattice-based
template bank for a given maximal mismatch μmax of
Eq. (12), namely,

μmax ≥ δλigijδλj ¼ δβlδlkδβ
k; ð80Þ

where δβl ≡ δλiAi
l in terms of the Cholesky decomposition

of the metric, i.e., gij ¼ Ai
lδlkAj

k. Further rescaling δqi ≡
ðR=

ffiffiffiffiffiffiffiffiffi
μmax

p Þδβi yields the corresponding Euclidean cover-
ing equation

δqiδijδqj ≤ R2; ð81Þ

in terms of the covering radius R. This requirement can be
satisfied by lattices [32,50] such as, for example, the simple
n-dimensional hypercubic lattice Zn (with a covering
radius of RZn

¼ ffiffiffi
n

p
=2), or the highly efficient covering

lattice A�
n. For both Zn and A�

n lattices, efficient algorithms
exist for finding the closest lattice point qt, satisfying
Eq. (81) for any given point qs ∈ Rn, with δq ¼ qt − qs.
For example, for Zn, this is trivially given by component-
wise rounding, i.e., qt ¼ round½qs�. We can use this
construction to (i) easily find the closest lattice template
λt to any given λs; (ii) transform into lattice coordinates, i.e.,
qs ¼ qðλsÞ; and (iii) find the closest lattice point qt and
invert back, i.e., λt ¼ λðqtÞ. The resulting distribution of
offsets δλ ¼ λt − λs uniformly samples the Wigner–Seitz
cell of the corresponding lattice, which is the natural offset
distribution for uniform signal probability over the param-
eter space λs ∈ P.
Note that, while the coherent short-segment metric ~gSS

of Eq. (57) is explicitly flat (i.e., constant), this is not true
for the other three cases, namely, the semicoherent short-
segment metric of Eq. (62), the coherent long-segment
metric of Eq. (47), and the semicoherent long-segment
metric of Eq. (48). However, it is easy to see that diagonal-
rescaling via Eq. (40) achieves explicit flatness in all these
three cases, namely, by working in terms of rescaled
coordinates

δλ0i ≡ ffiffiffiffiffi
gii

p
δλi: ð82Þ

It might seem that the terms involving Δma ≡ tmid − tasc
depend on the coordinate tasc, but this effect can be
neglected in all these cases, as we always assume
Tobs ≫ P, and by choosing a gauge on tp as in Eq. (79),
we can effectively approximate Δma=Tobs ≈ 0 in the metric.
The following metric tests use a Z6 lattice and a

maximum mismatch of μ̂max ¼ ~μmax ¼ 0.3. This lattice is
chosen purely for simplicity and only serves to generate
realistic signal offsets for testing the metric. Using a
different lattice (e.g., A�

n) would slightly change the
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distribution of sampled offsets but would be inconsequen-
tial for the metric-testing results. The maximal-mismatch
value of μmax ¼ 0.3 represents a fairly “typical” value for
realistic searches but is still small enough so that measured
F -statistic losses are only minimally affected by higher-
order corrections compared to the metric approximation
(e.g., see Refs. [29,30]). Here, we are mostly interested in
the accuracy of the metric within its range of applicability,
while nonlinear deviations from the metric approximation
would warrant a separate study.

B. Results in the long-segment regime

1. Coherent long-segment metric ~gLS

For these tests, we fix the scale of the orbital period to
P0 ¼ 19 h (similar to Scorpius X-1) and vary the segment
length ΔT from 3 to 39 d in steps of 4 d. We choose the
parameter space range for the orbital velocity Ω as
two times the largest possible metric spacing occurring
over the parameter space, i.e., dΩ ¼ 2max½ð~gLSΩΩÞ−1=2�∼
1.2 × 10−7 s−1. The resulting parameter-space half-width
in the period is dP ∼ 90 s, and therefore we have at
least ΔT=P ≥ 3.8.
The results of these tests are shown in Fig. 1 for the total

20 000 trials performed (2000 trials for each ΔT value). We
note that the performance of the parameter-space metric
starts to degrade below ΔT=P≲ 10 for low-eccentricity
orbits [panel (b)] and becomes generally poor for high-
eccentricity orbits above e≳ 10−1 [panels (a) and (c)].
Panels (d) and (e) show the agreement between the
measured mismatch distribution and the expectedZ6-lattice
distribution. In panel ðfÞ, we see that the phase-metric
approximation of Eq. (6) agrees better for small mismatch
values and develops a slight tendency to overestimate the
actual loss ~μ0 for higher mismatches. This is a general
feature seen in all four cases tested here and qualitatively
agrees with a similar effect seen in tests of the all-sky metric
for isolated CW signals [29,30].

2. Semicoherent long-segment metric ĝLS

The scale for the orbital period used here is P0 ¼ 2 h,
with segments of fixed length of ΔT ¼ 1 d and varying
Tobs. In total, we used ten values of Tobs: 1, 10, and 30 d up
to 100 d in steps of 10 d.
The parameter-space extent in orbital velocity is the

same as considered in the previous section, i.e., dΩ∼
1.2 × 10−7 s−1, resulting in a parameters-space half-width
for the period of dP ∼ 1 s. Therefore, ΔT=P ≥ 12 is
satisfied for all trials.
The results of these tests are shown in Fig. 2 for the total

of 20 000 trials performed (2000 trials for each Tobs value).
From panels (a, b, c), we see that the agreement between
measurements and predictions is generally good in the low-
eccentricity regime e < 10−1, while rapidly degrading at

higher eccentricites. The case Tobs ¼ ΔT ¼ 1 d corre-
sponds to the single-segment coherent case, and antenna-
pattern effects are expected to play a role for observation
times of the order of a day.

C. Results in the short-segment regime

1. Coherent short-segment metric ~gSS

There is an important technical difference in the injection
algorithm in this case, as the metric is expressed in u
coordinates of Eq. (58) instead of physical coordinates λ.
Here, the physical coordinates of an injected signal λs are
converted into u coordinates, us;k ≡ ukðλsÞ, and then the
closest lattice template ut;k is found. In principle, one could
try to convert this back into physical coordinates using the
expressions given in Appendix A, but this is not possible in
all cases, as some templates in u coordinates do not
correspond to physical coordinates and therefore cannot
be inverted. To circumvent this problem, we use the fact
that the u coordinates essentially describe an isolated CW
signal with n − 1 ¼ 5 spindown values. Hence, the per-
fectly matched F statistic is computed as usual at
F s ≡ F ðλsÞ, but the F statistic for the mismatched
template is computed at the isolated spindown location

defined by the u coordinates, namely, by setting fðkÞt ¼
ut;kþ1 for k ¼ 0;…5, i.e., F t ≡ F ðfðkÞt Þ.
The orbital period scale is set as P0 ¼ 80 d, and the

resolution for the orbital angular frequency is taken to
be dΩ ¼ 2 × 10−7 s−1, and hence P ∈ ½62; 97� d. We
sample segment lengths ΔT ranging from 2 up to 25 d
in steps of half a day, exploring the range in the relative
segment length of ΔT=P ∼ ½0.02; 0.4�, using a total of
94 000 trials performed (2000 trials for each ΔT value).
To better understand these results, it is interesting to

consider the effective template dimension for the different
software injections, which we can quantify in terms of the
highest nonzero component ut;k0 of the closest template
found for an injection, namely,

k0 ≡max k with jut;kj > 0: ð83Þ

This quantity is plotted Fig. 3 for the injections performed
for Fig. 4, giving the range of effective template dimensions
k0 as a function of relative segment length ΔT=P. As
expected, we see that the effective template dimension
increases with ΔT=P and eventually would require more
than 6 u coordinates for ΔT=P≳ 0.2, corresponding to the
region where the u-metric performance is seen in Fig. 4(b)
to start to degrade. We also see that the average template-
bank dimension is not constant and generally less than 6,
which explains the discrepancy between the sampled
mismatch distribution in Fig. 4(d) compared to the
expected Z6-lattice distribution.
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(a)

(c)(b)

(e)(d)

(g)(f)

FIG. 1. Coherent long-segment regime: results for metric tests on ~gLS of Sec. IV B 1, for an orbital period scale of P0 ¼ 19 h
and varying segment length ΔT from 3 to 39 d in steps of 4 d. (a) Relative error εð ~μ0; ~μÞ vs eccentricity e. The dashed vertical line
denotes the boundary between a “low-e” range e ∈ ½10−5; 0.1� (left-column plots) and a “high-e” range e ∈ ½0.1; 0.9� (right-column
plots). (b, c): Relative error ε vs observation time ΔT=P. The solid lines in panels (a, b, c) denote the median value, the error bars
correspond to the 25th–75th percentiles, and the circles and the stars denote the 2.5th and 97.5th percentiles, respectively.
(d, e): Mismatch histogram of measured mismatches ~μ0= ~μmax and theoretical distribution in a Z6 lattice. (f, g): Measured mismatch
~μ0 vs predicted ~μ.
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The results of the injection tests are shown in Fig. 4.
From panels (b) and (c), we see that the approximation
in terms of six u coordinates used here starts to break
down in the range ΔT=P≳ ½0.25; 0.35�, as anticipated

from Eq. (60) and Fig. 3. Also, contrary to the other
three limits tested, the small-eccentricity approximation
only seems to work well for eccentricities up to about
e≲ 3 × 10−3, after which it rapidly deteriorates and

(a)

(c)(b)

(e)(d)

(g)(f)

FIG. 2. Semicoherent long-segment regime: results for metric tests on ĝLS of Sec. IV B 2 for the orbital period scale of P0 ¼ 2 h and
fixed segment length of ΔT ¼ 1 d. (a) Relative error εðμ̂0; μ̂Þ vs eccentricity e. The dashed vertical line denotes the boundary between a
low-e range e ∈ ½10−5; 0.1� (left-column plots) and a high-e range e ∈ ½0.1; 0.9� (right-column plots). (b, c) Relative error ε vs
observation time Tobs. The solid lines in panels (a, b, c) denote the median value, the error bars correspond to the 25th–75th percentiles,
and the circles and the stars denote the 2.5th and 97.5th percentiles, respectively. (d, e) Mismatch histogram of measured mismatches
μ̂0=μ̂max and theoretical distribution in a Z6 lattice. (f, g) Measured mismatch μ̂0 vs predicted μ̂.
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increasingly loses predictive power beyond e≳ 10−2

[see panel (a)].

2. Semicoherent short-segment metric ĝSS

The scale for the orbital period here is fixed to
P0 ¼ 10 d, and we used a fixed segment length of
ΔT ¼ 1 d. The parameter space extent in terms of Ω is
dΩ¼2max½ðĝSSΩΩÞ−1=2�∼6.6×10−8 s−1, resulting in dP∼
2.2 h, and therefore we have at most ΔT=P≲ 0.12. We use
a varying Tobs ranging from 30 up to 100 d in steps of 10 d.
The results of these tests are shown in Fig. 5 for the total 16
000 trials performed (2000 trials for each Tobs value). We
note that the validity extent of the semicoherent metric is
constantly acceptable for low-eccentricity orbits [panel (b)]
and degrades (albeit much less than in the other three cases)
for higher eccentricity e≳ 10−1 [panels (a) and (c)]. Panels
(d) and (e) compare the mismatch histogram of measured
mismatches with the theoretical distribution in a Z6 lattice.
Furthermore, we also note that in this regime the metric
mismatch μ̂ tends to generally overestimate μ̂0 somewhat
more strongly than in the other cases [see panels (f)
and (g)].

D. General discussion of metric testing results

Summarizing the results presented in Figs. 1–5,
we observe that the agreement between metric mismatch
predictions and the measured relative loss in the F statistic
is generally very good (typically no worse than
∼10%–30%) within its range of applicability. In the
following, we further quantify where various approxima-
tions start to break down.
The first-order small-eccentricity approximation (see

Sec. III B) starts to noticeably degrade only above
e≳ 0.1 [Fig. 1(a), Fig. 2(a), and Fig. 5(a)] except in the
coherent short-segment regime in which it breaks down
above e≳ 5 × 10−3 [Fig. 4(a)]. Further investigation of this
behavior might be interesting but is beyond the scope of
this study.

The (phase-)metric approximation Eq. (6) is expected
from previous studies [29,30] to be quite accurate (in
suitable coordinates) up to values of the mismatch of
μ≲ 0.2, after which higher-order terms start to become
more noticeable, which tend to reduce the actual measured
mismatches compared to the metric predictions. While
the nonlinear regime is hardly explored here, this general
trend can still be seen to some extent in panels (f) of
Figs. 1,2,4, and 5.

VII. SCORPIUS X-1 SENSITIVITY ESTIMATE

We can use the metric expressions and template counts
derived in Sec. V to estimate the optimal achievable
sensitivity of a semicoherent search directed at Scorpius
X-1.

A. Torque-balance level

To quantify the sensitivity of a search independent of
the detector noise floor, we can define the sensitivity depth
[51] as

DC
pfa

≡
ffiffiffiffiffi
Sn

p
hCpfa

; ð84Þ

in terms of the harmonic mean over detector noise floors
Sn, and the strain sensitivity (or upper limit) hCpfa

of a
search at a certain confidence level C (i.e., detection
probability) and false-alarm threshold pfa. This quantity
(with dimensions of Hz−1=2) is useful as a simple and
intuitive measure for how far below the noise floor a given
search setup can reach.
An interesting astrophysical model postulating torque

balance between the accretion and CW emission [7,8,52]
yields a predicted CW amplitude (assuming a NS with a
10 km radius and a mass of 1.4M⊙) for Scorpius X-1 of

h0 ∼ 3.5 × 10−26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300 Hz

ν

r
; ð85Þ

where ν is the (unknown) NS spin frequency.
Figure 6 shows the minimum required sensitivity depth

DScoX1 to reach the Scorpius X-1 torque-balance limit of
Eq. (85) for different emission models (mountain defor-
mation with f̄ ¼ 2ν, r-mode emission with f̄ ≈ 4ν=3, and
precession with f̄ ≈ ν), assuming different aLIGO sensi-
tivity curves (“early,” “mid,” “late,” and “final”) [53–55].
For all the following sensitivity estimates, we will

assume a detector duty cycle of 80% (following
Ref. [55]), a 90% confidence level (i.e., detection proba-
bility), and a false-alarm level of pfa ¼ 10−10 (appropriate
for a first-stage wide-parameter search).
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FIG. 3. Effective template dimension k0 of Eq. (83) vs segment
length ΔT=P for the software-injection studies shown in Fig. 4.
Solid line: mean value, error bars: maximum and minimum of k0.

DIRECTED SEARCHES FOR CONTINUOUS … PHYSICAL REVIEW D 91, 102003 (2015)

102003-15



(a)

(c)(b)

(e)(d)

(g)(f)

FIG. 4. Coherent short-segment regime: results for metric tests on ~gSS of Sec. IV C 1 using u coordinates, for an orbital period scale of
P0 ¼ 80 d and coherent observation times in the range ΔT ∈ ½2; 25� d. (a) Relative error εð ~μ0; ~μÞ vs eccentricity e. The dashed vertical
line denotes the boundary between a low-e range e ∈ ½10−5; 10−3� (left-column plots) and a high-e range e ∈ ½10−3; 10−2� (right-column
plots). (b, c) Relative error ε vs observation time ΔT=P. The solid lines in panels (a, b, c) denote the median value, the error
bars correspond to the 25th–75th percentiles, and the circles and the stars denote the 2.5th and 97.5th percentiles, respectively.
(d, e) Mismatch histogram of measured mismatches ~μ0= ~μmax and theoretical distribution in a Z6 lattice. (f, g) Measured mismatch ~μ0 vs
predicted ~μ. Note that in all plots except (b, c) the range of relative segment length was restricted to ΔT=P ≤ 0.2, where the short-
segment limit approximation is seen to be valid.
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(a)

(c)(b)

(e)(d)

(g)(f)

FIG. 5. Semicoherent short-segment regime: results for metric tests on ĝSS of Sec. IV C 2 for an orbital period scale of P0 ¼ 10 d and a
fixed segment length of ΔT ¼ 1 d. (a) Relative error εðμ̂0; μ̂Þ vs eccentricity e. The dashed vertical line denotes the boundary between a
low-e range e ∈ ½10−5; 0.1� (left-column plots) and a high-e range e ∈ ½0.1; 0.9� (right-column plots). (b, c) Relative error ε vs
observation time Tobs. The solid lines in panels (a, b, c) denote the median value, the error bars correspond to the 25th–75th percentiles,
and the circles and the stars denote the 2.5th and 97.5th percentiles, respectively. (d, e) Mismatch histogram of measured mismatches
μ̂0=μ̂max and theoretical distribution in a Z6 lattice. (f, g) Measured mismatch μ̂0 vs predicted μ̂.
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B. Best theoretically achievable sensitivity

1. Short-segment regime

Let us first consider the short-segment regime, assuming a
“best-case” searchwith segments of lengthΔT ¼ 4.7 h (i.e.,
roughly 1=4 of the Scorpius X-1 orbital period, quoted in
Table I), total time span Tobs ¼ 365 d (therefore N ¼ 1864
segments), two detectors [LIGO H and Livingston (L)],
and a very fine search grid of average mismatch μ ¼ 0.01.
Using the method outlined in Ref. [56] and implemented in
Ref. [57], we obtain a resulting sensitivity depth of
D90%

1e−10 ∼ 56 Hz−1=2. Assuming three equal-sensitivity
detectors [LIGO H, L, and Virgo (V)], this value increases
to D90%

1e−10 ∼ 68 Hz−1=2.

2. Long-segment regime

In the long-segment regime of Sec. IV B, the maximal
segment length would be restricted by the astrophysical

concern of “spin wandering,” namely, a stochastic vari-
ability of the spin frequency due to variations in the
accretion rate. There is substantial astrophysical uncer-
tainty [13,18,60] about the details of this process and its
magnitude, which is beyond the scope of this work. We
consider assumptions roughly similar to those given in the
recent Scorpius X-1 MDC [10], which posited a random
frequency derivative of order j _fj ≤ _fs ∼ 10−12 Hz=s,
changing on a time scale of ts ∼ 106 s. Over this time
scale, the frequency drift would therefore be
δ ~fs ≤ _fsts ∼ 10−6 Hz. Over a total observation time
Tobs, this can be modelled as a random walk with expected
total drift (with respect to the midpoint in time) of order
δf̂s ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs=ð2tsÞ

p
δ ~fs. The maximal coherent segment

length could therefore be estimated roughly by the require-
ment that the total frequency drift should be less than the
frequency resolution∼1=ΔT of the search, in order to avoid
any significant loss of SNR. This yields the constraint

ΔT ≲ ffiffiffi
2

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
Tobsts

p
_fsÞ−1: ð86Þ

Assuming Tobs ¼ 1year and the above MDC spin-
wandering model, we find ΔT ≲ 3 d. Given the substantial
uncertainty in these parameters, for comparison, we also
consider a more optimistic scenario of ΔT ≲ 10 d.
The best achievable sensitivity for ΔT ¼ 3 d and N ¼

120 segments, assuming a small mismatch of μ ¼ 0.01,
can be estimated for a two-detector network as D90%

1e−10∼
105 Hz−1=2, and for three detectors, we find
D90%

1e−10 ∼ 127 Hz−1=2.
The best sensitivity that can be achieved for ΔT ¼ 10 d

and N ¼ 36 segments, and μ ¼ 0.01, can be estimated for
a two-detector network as D90%

1e−10 ∼ 134 Hz−1=2, and for
three detectors, we find D90%

1e−10 ∼ 163Hz−1=2.
In the following, we will focus only on the long-segment

regime and assess the required computing power as well as
the resulting sensitivity depth that can actually be reached
in practice.

C. Scorpius X-1 search parameter space

We assume the Scorpius X-1 parameters and uncertain-
ties given in Table I. Note that, contrary to the Scorpius X-1
MDC [10] and previous searches [13], we also allow for a
nonzero uncertainty on the eccentricity, in addition to the
circular-orbit assumption that is also not ruled out by
current observations [59].
Assuming 3-sigma ranges for the Scorpius X-1 param-

eter uncertainties, the resulting per-dimension template
numbers N λi at maximal mismatch μmax¼0.1 of Eq. (70)
are shown in Fig. 7. We see that, for the potential uncertainty
on eccentricity e of Table I, one would have to include e
and ω as effective search dimensions in the long-segment
limit. On the other hand, the assumption of full circulari-
zation e ≈ 0 is not ruled out by the current observations and
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FIG. 6 (color online). Sensitivity depth DScoX1 of Eq. (84) for
Scorpius X-1 torque-balance level Eq. (85) vs CW frequency f̄.
Different line styles correspond to different progressive aLIGO
sensitivities (early, mid, late, and final) [53–55]. For each detector
sensitivity, three different emission models are shown, namely,
top: mountain (f̄ ¼ 2ν), mid: r mode (f̄ ≈ 4ν=3), bottom:
precession (f̄ ≈ ν), respectively.

TABLE I. Assumed Scorpius X-1 system parameters and
uncertainties. Ranges of the form λ� Δλ denote the mean and
Gaussian 1-sigma uncertainty, while ½λ0; λ1� denotes a uniform
probability range. The time of ascending node tasc was computed
from the originally measured time of inferior conjunction T0 [48]
via tasc ¼ T0 − P=4. The projected semimajor axis ap is related to
the projected radial maximal velocity K1, appearing in Ref. [58],
by ap ¼ K1P=ð2πcÞ.
Parameter Value Ref.

ap (s) 1.44� 0.18 [13,58]
tasc (GPSs) 897753994� 100 [48]
P (s) 68023.70496� 0.0432 [48]
e ð≈0Þ or ð0.033� 0.018Þ [59]
ω (rad) ½0; 2π� [59]
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therefore also constitutes a reasonable alternative model to
investigate.
The only dimension in which the resolution depends on

the time span T is Ω. We see, for example, that for coherent
times ΔT ≲ 10 d the uncertainty in Ω will typically not be
resolved by the coherent metric (as long as ~μmax ≥ 0.1), as
N ΩðT < 10 dÞ ≲ 1. In this case, one could simply exclude
this search dimension in the coherent template count of
Eq. (13). On the other hand, the semicoherent fine grid
(assuming Tobs ≥ 90 d and μ̂max ≤ 0.1) can typically
resolve this dimension over some frequency range in which
N ΩðT > 90 dÞ > 1. In both cases, however, this depends
on the resulting mismatch parameter μmax, which is itself an
optimization parameter. Therefore, as seen in Fig. 7, one
potentially has to deal with situations in which the Ω
dimension will be unresolved at lower frequencies but
resolved at higher frequencies. One way to obtain a correct
template estimate in such a case would be to determine if a
transition frequency exists, where theΩ dimension changes
from unresolved to resolved, then stitch together the
respective correct template counts over each frequency
range. Alternatively, one can simply split the frequency
range into narrow slices, such that the dimensionality can
be assumed constant over each slice, and sum up the
respective number of templates.
Note that, due to the large separation Δma between the

orbital epoch tasc in Table I and the aLIGO gravitational
wave search epoch, we have to consider the potential
increase in uncertainty on tasc, as discussed in Ref. [48]. As
discussed in Sec. VA, this is not a concern for a grid where
both Ω and tasc are fully resolved by the metric, as is
expected to be the case of the semicoherent grid. On the
other hand, the coherent grids will typically not resolve the

Ω dimension, and therefore an increase of about 2.5–3 in
uncertainty on tasc would have to be taken into account.
However, for the present study, we assume (as seems likely
[48]) that there will be further observations on Scorpius X-1
closer to the aLIGO epoch, which will again constrain the
uncertainty on tasc to a level similar (or better) than that
given in Table I.

D. Computing cost model

As described in Ref. [20], a semicoherent StackSlide
search (introduced in Sec. II B) for a fixed parameter
space has the following tuneable parameters: the seg-
ment length ΔT, the number of segments N, the maximal
template-bank mismatch for the (semicoherent) fine grid
μ̂max, and for the per-segment (coherent) coarse grid
~μmax. The aim is therefore to maximize the resulting
sensitivity over this space of search parameters, under
the constraint of fixed total computing cost
Ctotð ~μmax; μ̂max; N;ΔTÞ ¼ C0.
The total computing cost Ctot of the StackSlide F̂ statistic

can be written as [20]

Ctotð ~μmax; μ̂max; N;ΔTÞ ¼ ~C þ Ĉ; ð87Þ

where ~Cð~μmax; N;ΔTÞ is the cost of N per-segment coher-
ent ~F -statistic searches over a coarse grid with maximal
mismatch ~μmax and Ĉðμ̂max; N;ΔTÞ is the cost of incoher-
ently summing (and interpolating) these ~F l values across
all segments on a fine grid with maximal mismatch μ̂max.
The coherent cost for the ~F -statistic computation can be

expressed as

~C ¼ N ~N ð~μmax;ΔTÞNdet ~c1ðΔTÞ; ð88Þ

where Ndet is the number of detectors and ~c1 is the (per-
detector) computing cost per template, which depends on
the algorithm used to compute the ~F statistic. For the
(generally slower) SFT-based demodulation method [61],
this can be expressed (for gapless data) as

~csft1 ðΔTÞ ¼ ~csft0
ΔT
Tsft

; ð89Þ

where ~csft0 ≈ 4 × 10−8 s is an implementation- and hard-
ware-dependent fundamental computing cost for binary-
CW templates (measured by timing the current ~F -statistic
LALSuite code [49]).
Using instead the more efficient fast Fourier transform

(FFT) based “resampling”method [28,62], we find the time
per template ~c1 to be approximately constant (for search
frequency bands of ≳105 frequency bins) as

~cFFT1 ≈ 3 × 10−7 s: ð90Þ

FIG. 7 (color online). Effective number of (coherent or
semicoherent) templates per dimension N λ of Eq. (70) (in
the long-segment regime) as a function of CW frequency f̄
for the Scorpius X-1 parameter space given in Table I, using
�3-sigma ranges. The template numbers are evaluated for
μmax ¼ 0.1 and mean values of ap and Ω. Note that assuming
a 2π uncertainty in ω entails N fe;ωg ¼ N 2

eπ. The template
count N Ω is the only one depending on the observation time
T and is shown for T ¼ 1 d; 10 d; 90 d.
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The semicoherent cost of summing across segments can be
expressed as

Ĉ ¼ NN̂ ðμ̂max;ΔT;NÞĉ0; ð91Þ

where ĉ0 ≈ 5 × 10−9 s is an implementation- and hard-
ware-dependent fundamental computing cost of adding one
value of 2 ~F l for one fine-grid point (measured by timing
the LALSuite HIERARCHSEARCHGCT code [49]).
Note that the sensitivity estimates presented in

Tables II–VII are using “Einstein@Home months” (EM)
as a computing-cost unit. This unit is defined as 12000 core
months7 on a CPU that achieves the above-quoted timings
ĉ0 and ~c1. Empirically, this corresponds to the performance
of the “average CPUs” currently participating in
Einstein@Home and is comparable to roughly an Intel
Core i7-2620M or Intel Xeon E3-1220 v3.

E. Sensitivity estimates

With the computing-cost model at hand, we can employ
the semianalytic machinery of Ref. [20] to find optimal
StackSlide setups for given computing cost. We can then
estimate the corresponding sensitivity of each setup with
the fast and accurate method developed in Ref. [56]. Both
the optimization and sensitivity-estimation algorithms were
implemented in Ref. [57] and are used here.
Because of the rapidly increasing computing cost with

frequency [see Eqs. (72)–(75)], it is important to limit the
frequency range searched in some way. Hence, we focus on
constructing example setups that beat the torque-balance
level (shown in Fig. 6) over their respective fre-
quency range.

We consider the two different constraints on the
segment length ΔT due to spin wandering, as discussed
in Sec. VII B, namely, ΔT ≤ 10 d and ΔT ≤ 3 d,
respectively. For ΔT ≤ 10 d, the results for different F -
computation methods and assumptions about eccentricity
are summarized in Table II (for SFT-based demodulation
and zero uncertainty on e), Table III (for FFT-based
resampling and zero uncertainty on e), and Table IV
(for FFT-based resampling and 3-sigma uncertainty of
Δe ¼ 0.087).
Similarly, for ΔT ≤ 3 d, the results for different F -

computation methods and assumptions about eccentricity
are summarized in Table V (for SFT-based demodulation
and zero uncertainty on e), Table VI (for FFT-based
resampling and zero uncertainty on e), and Table VII
(for FFT-based resampling and 3-sigma uncertainty
of Δe ¼ 0.087).
In each table, the first line shows a setup beating the

f̄ ¼ 2ν torque-balance depth for the final aLIGO sensitivity
curve of Fig. 6 over the given frequency range, while
subsequent lines illustrate slight variations when changing
only one of the constraints (computing cost C0, observation
time Tobs, or detectors, respectively). In the last line of each
table, we also show a setup beating the f̄ ¼ 2ν torque-
balance level depth over the given frequency range,
assuming a 6 month science run using the mid aLIGO
configuration, which is currently estimated [55] to take
place in about 2016–2017.
Summarizing these results, we find that the SFT-based

demodulation method can only reach the torque-balance
level assuming we can neglect the uncertainty in eccen-
tricity (Δe ¼ 0), shown in Tables II and V. The FFT-based
resampling method, in the case of Δe ¼ 0, can beat the
torque-balance level over a wider frequency range up to
∼630 Hz (for ΔT ≤ 10 d) or up to ∼500 Hz (for
ΔT ≤ 3 d), even at substantially reduced computing cost
(cf. Tables III and VI), and can still beat the torque-balance

TABLE II. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 10 d)
using the SFT-based demodulation algorithm, assuming negligible uncertainty Δe ¼ 0 on the eccentricity. The SFT length assumed is
Tsftð430 HzÞ ¼ 240 s and Tsftð250 HzÞ ¼ 320 s (see Appendix C, for μsft ¼ 0.01). The first line shows a setup beating the final f̄ ¼ 2ν
torque-balance depth (see Fig. 6) over the given frequency range, and subsequent lines illustrate the results for slightly different
constraints on computing cost C0, observation time Tobs, and interferometers (IFOs). The last line shows a setup beating the f̄ ¼ 2ν
torque-balance level depth over the given frequency range with a mid aLIGO configuration. In all cases, the template-bank dimensions
are found as ~n ¼ 3 and n̂ ¼ 4. The computing-cost unit EM corresponds to running on Einstein@Home for a month, and is explained in
more detail in Sec. VII D.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 430] 12 HL 360.0 43 8.30 0.71 0.04 3.4 × 1013 7.5 × 1016 22 100
[20, 430] 6 HL 360.0 83 4.36 0.74 0.06 1.7 × 1013 2.4 × 1016 18 86
[20, 430] 12 HL 180.0 18 10.00 0.50 0.02 6.9 × 1013 1.5 × 1017 27 91
[20, 430] 12 HLV 360.0 62 5.77 0.73 0.04 2.3 × 1013 5.1 × 1016 22 112

6 month science run with mid aLIGO:
[40, 230] 6 HL 180.0 18 10.00 0.18 0.010 4.8 × 1013 7.8 × 1016 26 102

7Counting only the 30%–50% CPUs currently devoted to
gravitational wave searches and including the double-
computation of all results for validation.
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limit (albeit only up to a smaller frequency of
∼160 Hz − 200 Hz, depending on the constraint on ΔT)
in the case of substantial uncertainty (Δe ¼ 0.087) on
eccentricity, as seen in Tables IV and VII.
At a lower-false alarm probability of pfa ¼ 10−14,

corresponding to a level at which one might set upper
limits without any further followup, the corresponding
sensitivity depth D90%

1e−14 would be roughly 10% lower
compared to the values of D90%

1e−10 quoted in Tables II–VII.
Note that some of the optimal setups include maximal

mismatches μmax of order unity, which would violate the

metric approximation discussed in Sec. II C. To fully
quantify this effect, further Monte Carlo tests on the
higher-order metric deviations would be required, but
qualitatively we know from previous results (e.g., see
Refs. [29,30], Figs. 1(f), 2(f), and metric tests we performed
at μmax ¼ 0.5 that are not shown here) that in this regime
the metric approximation generally tends to overestimate
the actual measured mismatches. Furthermore, the distri-
bution of sampled mismatches will be peaked around their
mean value, which for A�

4 lattices is hμi ≈ 0.5μmax, and will
therefore not be affected as much by these deviations.

TABLE III. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 10 d)
using the FFT-based resampling algorithm, assuming negligible uncertainty Δe ¼ 0 on the eccentricity. In all cases, the template-bank
dimensionalities are found as ~n ¼ 3 and n̂ ¼ 4. The notation is the same as in Table II.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 630] 12 HL 360.0 36 10.00 0.04 0.03 1.1 × 1016 8 × 1017 1.6 129
[20, 630] 6 HL 360.0 36 10.00 0.06 0.05 5.5 × 1015 3.8 × 1017 1.7 127
[20, 630] 1 HL 360.0 36 10.00 0.19 0.12 9.7 × 1014 5.6 × 1016 2.1 117
[20, 630] 12 HL 180.0 18 10.00 0.03 0.02 2.5 × 1016 1.4 × 1018 2.1 105
[20, 630] 12 HLV 360.0 36 10.00 0.05 0.03 7.5 × 1015 7.2 × 1017 1.9 155
6 month science run with mid aLIGO:
[40, 250] 6 HL 180.0 18 10.00 0.006 0.004 1.1 × 1016 6.9 × 1017 2 107

TABLE IV. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 10 d)
using the FFT-based resampling method, assuming a pessimistic uncertainty Δe ¼ 0.087 on eccentricity (see Table I). In all cases, the
template-bank dimensionalities are found as ~n ¼ 5 and n̂ ¼ 6. The notation is the same as in Table II.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 200] 12 HL 360.0 36 10.00 1.18 0.54 1.3 × 1016 5.7 × 1017 2.6 60
[20, 200] 6 HL 360.0 36 10.00 1.56 0.68 6.3 × 1015 2.8 × 1017 2.7 55
[20, 200] 12 HL 180.0 18 10.00 0.88 0.35 2.6 × 1016 1018 3 56
[20, 200] 12 HLV 360.0 36 10.00 1.37 0.55 8.6 × 1015 5.2 × 1017 3 68
6 month science run with mid aLIGO:
[60, 140] 6 HL 180.0 18 10.00 0.57 0.21 1.3 × 1016 5 × 1017 3.1 74

TABLE V. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 3 d) using
the SFT-based demodulation algorithm, assuming negligible uncertainty Δe ¼ 0 on the eccentricity. The SFT length assumed
is Tsftð420 HzÞ ¼ 250 s and Tsftð150 HzÞ ¼ 410 s (see Appendix C, for μsft ¼ 0.01). The first line shows a setup beating the final
f̄ ¼ 2ν torque-balance depth (see Fig. 6) over the given frequency range, and subsequent lines illustrate the results for slightly different
constraints on computing cost C0, observation time Tobs, and detectors (IFOs). The last line shows a setup beating the f̄ ¼ 2ν torque-
balance level depth over the given frequency range with a mid aLIGO configuration. In all cases, the template-bank dimensions are
found as ~n ¼ 3 and n̂ ¼ 4.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 420] 12 HL 360.0 120 3.00 0.34 0.03 3.5 × 1013 4.3 × 1016 14 94
[20, 420] 6 HL 360.0 120 3.00 0.54 0.05 1.8 × 1013 2 × 1016 15 87
[20, 420] 12 HL 180.0 60 3.00 0.21 0.02 7.1 × 1013 7.4 × 1016 16 80
[20, 420] 12 HLV 360.0 120 3.00 0.44 0.04 2.4 × 1013 3.6 × 1016 16 110
6 month science run with mid aLIGO:
[50, 150] 6 HL 180.0 60 3.00 0.03 0.003 5.7 × 1013 4.3 × 1016 14 85
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F. Comparison to previous sensitivities

To put these sensitivities in context, we consider some
previously achieved sensitivities for Scorpius X-1 CW
searches. The first coherent Scorpius X-1 search presented
in Ref. [11] was computationally limited to using a total of
∼9 h of data collected by LIGO during the second science
run with the Livingston and Hanford detectors. Such a
search achieved upper limits corresponding to a sensitivity
depth of approximately D95% ≈ 4 Hz−1=2, which is roughly
consistent with the theoretical expectation [56] of D95%

1e−14 ≈
4.5 Hz−1=2 for a fully coherent two-detector search. The
recent search on the fifth LIGO science run, which used a
semicoherent sideband method [13], achieved a substan-
tially improved sensitivity depth of D95% ≈ 30 Hz−1=2 over
a frequency band of 50–550 Hz. Note that the software-
injected signals used in the recent Scorpius X-1 MDC [10]
are found (over a frequency range of 50–1500 Hz) in the
depth range D ∈ ½2.6; 104� Hz−1=2 for the “open” injec-
tions, and D ∈ ½2.4; 58� Hz−1=2 for the “closed” injections.

VIII. CONCLUSIONS

The work presented here consists of three main parts. In
the first part, we rederived the (coherent and semicoherent)
metric expressions for the long-segment and short-segment
regimes, assuming a low-eccentricity binary orbit. We
found that (as has also been noted earlier) the long-segment
regime does require refinement in the orbital angular

velocity Ω, contrary to an earlier result in the literature
[27]. We have extended these findings to allow for general
offsets between the orbital reference time epoch tasc and the
observation epoch, which explicitly show that there is
generally no increase in computing cost with increasing
time passed since the original orbital reference epoch if
both Ω and tasc are fully resolved by the metric.
In the second part, we subjected the analytic metric

expressions to extensive Monte Carlo tests, comparing their
predictions against measured SNR loss in software-
injection studies, and found robust agreement within their
range of applicability.
In the final part of this work, we used the metric template

counts to semianalytically estimate the optimal achievable
StackSlide sensitivity of a directed search for Scorpius X-1.
We found that the predicted torque-balance limit could be
reachable for the first time with an Einstein@Home search
using data from a 6 month mid aLIGO run (currently
planned for 2016–2017) and should be beatable over a
substantial frequency range in final aLIGO. However, the
frequency range over which the torque-balance limit can be
beaten depends strongly on the Scorpius X-1 parameter-
space uncertainty, most notably the orbital eccentricity and
the assumed characteristics of spin wandering.
More work is required to better understand the modelling

and effects of spin wandering, as well as the resulting
constraints on search methods. It would seem desirable to
develop a more robust statistic that properly takes spin
wandering into account, for example, by marginalizing

TABLE VI. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 3 d)
using the FFT-based resampling algorithm, assuming negligible uncertainty Δe ¼ 0 on the eccentricity. In all cases, the template-bank
dimensionalities are found as ~n ¼ 3 and n̂ ¼ 4. The notation is the same as in Table II.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 500] 12 HL 360.0 120 3.00 0.02 0.02 3.2 × 1015 2.4 × 1017 1.6 102
[20, 500] 6 HL 360.0 120 3.00 0.04 0.03 1.6 × 1015 1.1 × 1017 1.7 101
[20, 500] 1 HL 360.0 120 3.00 0.12 0.07 2.9 × 1014 1.7 × 1016 2.1 96
[20, 500] 12 HL 180.0 60 3.00 0.01 0.01 6.7 × 1015 4.4 × 1017 1.8 84
[20, 500] 12 HLV 360.0 120 3.00 0.03 0.02 2.3 × 1015 2.1 × 1017 1.9 123
6 month science run with mid aLIGO:
[50, 190] 6 HL 180.0 60 3.00 0.003 0.002 3.4 × 1015 2.1 × 1017 2 85

TABLE VII. Optimal search setups and corresponding sensitivity estimates for a Scorpius X-1 StackSlide search (with ΔT ≤ 3 d)
using the FFT-based resampling method, assuming a pessimistic uncertainty Δe ¼ 0.087 on eccentricity (see Table I). In all cases, the
template-bank dimensionalities are found as ~n ¼ 5 and n̂ ¼ 6. The notation is the same as in Table II.

f̄ (Hz) C0 (EM) IFOs Tobs (d) N ΔT (d) ~μmax μ̂max ~N N̂ ~C=Ĉ D90%
1e−10 (1=

ffiffiffiffiffiffi
Hz

p
)

[20, 160] 12 HL 360.0 120 3.00 0.76 0.34 3.8 × 1015 1.7 × 1017 2.6 58
[20, 160] 6 HL 360.0 120 3.00 1.00 0.44 1.9 × 1015 8.3 × 1016 2.7 50
[20, 160] 12 HL 180.0 60 3.00 0.57 0.22 7.8 × 1015 3.1 × 1017 3 59
[20, 160] 12 HLV 360.0 120 3.00 0.88 0.35 2.6 × 1015 1.6 × 1017 3 65
6 month science run with mid aLIGO:
[70, 110] 6 HL 180.0 60 3.00 0.34 0.13 3.9 × 1015 1.5 × 1017 3.1 71
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over the spindown uncertainty in each segment before
incoherently summing them.
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APPENDIX A: INVERTING THE u
COORDINATES BACK INTO
PHYSICAL COORDINATES

Let us define rescaled coordinates

wk ≡ uk
Ωk ðA1Þ

and consider the set of Eqs. (58) for wk ¼ wkðλÞ.

1. General six-dimensional elliptic case

Let us take linear combinations of the equations for
w2;…w5 to express

sinψm ¼ 1

3f̄ap
ðw4 þ 4w2Þ; ðA2Þ

cosψm ¼ 1

3f̄ap
ðw5 þ 4w3Þ; ðA3Þ

sin 2ψm ¼ −
1

12f̄ape2
½2κðw2 þ w4Þ þ ηðw3 þ w5Þ�; ðA4Þ

cosψm ¼ −
1

12f̄ape2
½κðw3 þ w5Þ − 2ηðw2 þ w4Þ�; ðA5Þ

where we used e2 ¼ κ2 þ η2. We now insert these into the
equation for w6 to obtain

w6 þ 5w4 þ 4w2 ¼ 0; ðA6Þ

which yields a quadratic equation for Ω2, with solution

Ω2 ¼ −
5u4
8u2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
5u4
8u2

�
2

−
u6
4u2

s
; ðA7Þ

which requires 25u24 − 16u2u6 > 0 for real-valued Ω2.
Note that once we know Ω then all wk are known
numerically as well. Inserting Eqs. (A2)–(A5) into the
equation for w1 brings us to find

f ¼ u1 þ
5u3
Ω2

þ u5
4Ω4

: ðA8Þ

Using sin2ψm þ cos2ψm ¼ 1, we obtain

3f̄ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw5 þ 4w3Þ2 þ ðw4 þ 4w2Þ2

q
; ðA9Þ

where we note that for constant-frequency signals we
numerically have f̄ ¼ f. Hence, given f from the previous
equation, we easily get ap. Proceeding similarly for
sin22ψm þ cos22ψm ¼ 1, we find

e ¼ 1

12f̄ap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw3 þ w5Þ2 þ 4ðw2 þ w4Þ2

q
: ðA10Þ

We can simply invert Eqs. (A2) and (A3) to obtain ψm and
therefore tasc. Finally, solving the linear system of equa-
tions w2; w3 for κ; η yields

κ ¼ 1

4f̄ap
½2ðw2 − f̄ap sinψmÞ sin 2ψm

þðw3 − f̄ap cosψmÞ cos 2ψm�; ðA11Þ

η ¼ 1

4f̄ap
½ðw3 − f̄ap cosψmÞ sin 2ψm

þ2ðf̄ap sinψm − w2Þ cos 2ψm�; ðA12Þ

which, using Eq. (A10) and Eq. (33), gives us ω.

2. Special four-dimensional circular case

In the special circular case, we can obtain a simpler
solution by inverting the equations for fw1;…w4g and
setting κ ¼ η ¼ 0, namely,

w1 ¼
f
Ω
− f̄ap cosψm; ðA13Þ

w2 ¼ f̄ap sinψm; ðA14Þ

w3 ¼ f̄ap cosψm; ðA15Þ

w4 ¼ −f̄ap sinψm: ðA16Þ
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By summing equations for w2 and w4, we find
w2 þ w4 ¼ 0, which is a quadratic equation for Ω with
solution

Ω ¼
ffiffiffiffiffiffiffiffiffi
−
u4
u2

r
; ðA17Þ

which numerically determines all wk. We can further see
that

f̄ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
2 þ w2

3

q
ðA18Þ

and

tanψm ¼ w2

w3

; ðA19Þ

yielding tasc, and finally

f ¼ f̄apΩ cosψm þ u1: ðA20Þ

APPENDIX B: MAXIMAL DOPPLER SHIFT
DUE TO ORBITAL MOTION

Sometimes, it is important to estimate the maximal
Doppler shift the intrinsic signal frequency of a binary
CW signal can undergo due to orbital motion. From the
phase model of Eq. (29), we see that the instantaneous
Doppler shift is

���� dϕ=dt2πf
− 1

���� ¼
���� dRcdt

����
¼ apΩ

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cosE cosω − sinE sinω
1 − e cosE

����
≤ apΩ

j sinE sinωj þ j cosE cosωj
j1 − e cosEj ; ðB1Þ

where we used the fact that jaþ bj ≤ jaj þ jbj andffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
≤ 1. We further observe that

j cosE cosωj þ j sinE sinωj
¼ maxfj cosðEþ ωÞj; j cosðE − ωÞjg ≤ 1; ðB2Þ

and j1 − e cosEj ≥ 1 − e to obtain

���� dϕ=dt2πf
− 1

���� ≤ apΩ
1 − e

: ðB3Þ

APPENDIX C: MAXIMAL SFT LENGTH

By using the SFT-based demodulation method to com-
pute the ~F statistic, the computing cost per template
increases linearly with the number of SFTs used [see
Eq. (88)]. On the other hand, the maximal length of the
SFT is limited by the linear-phase approximation over the
duration of each SFT. To minimize the computing cost of
this method, we therefore want to choose the longest
possible SFT duration Tsft [see Eq. (89)] with an acceptable
error in the linear-phase approximation.
To estimate the maximal phase error of the linear-phase

approximation over an SFT, we can conveniently reuse the
short-segment limit expressions and simply estimate the
phase error as

jΔϕj ∼ jv2j ¼ 2π
ju2j
2!

�
Tsft

2

�
2

∼
π

4
apf̄Ω2T2

sft; ðC1Þ

and the corresponding mismatch is given via Eq. (57) as
μsft ∼ ~gSS;v22 v22 ¼ 4

45
v22. Turning this around to express the

maximal Tsft for a given maximal mismatch μsft, we obtain

T2
sftðf̄Þ ≤

6
ffiffiffiffiffiffiffiffiffi
5μsft

p
πapf̄Ω2

; ðC2Þ

where the largest values of the parameter space being
searched should be used for ap;Ω, and f̄. This constraint on
Tsft is illustrated in Fig. 8 as a function of search frequency
f̄ for Scorpius X-1 parameters of Table I. We see that for
Scorpius X-1 this limit is more stringent than the analogous
constraint coming purely from the Doppler effect due to the
detector motion, which typically results in a choice of
Tsft ¼ 1800s in searches for isolated CW sources (see,
e.g., Ref. [17]).
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FIG. 8 (color online). Maximal allowed SFT length Tsft of
Eq. (C2) for a Scorpius X-1 demodulation ~F -statistic search as a
function of frequency f̄, for three different tolerated maximal
mismatches μsft.
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APPENDIX D: OPTIMAL STACKSLIDE
SOLUTION FOR DEGENERATE
COMPUTING COST FUNCTION

In the case of the FFT-based resampling algorithm for the
~F statistic of Eq. (90), we encounter a degeneracy in the
computing-cost function that had not been considered in
the original optimization study of Ref. [20]. Namely, when
the search dimension Ω is resolved in the semicoherent
template bank, but unresolved in the per-template coherent
banks, then we see from Eqs. (72)–(75) that the number
of templates (both for including eccentricity ~n ¼ 5; n̂ ¼ 6,

and for the circular case ~n ¼ 3; n̂ ¼ 4), scale as ~N ∝ ΔT
and N̂ ∝ NΔT, respectively, where we assumed the ideal
gapless case with γ ¼ N. From the computing-cost expres-
sions Eq. (88) and Eq. (91), we see that therefore the
computing-cost functions take the form ~C ∝ NΔT ∝ Tobs

and Ĉ ∝ ðNΔTÞ2 ∝ T2
obs. In this case, the power-law

coefficients in the formalism of Ref. [20] are ~η ¼ ~δ ¼ 1

and η̂ ¼ δ̂ ¼ 2 (the resulting N coefficients at fixed Tobs are
therefore ~ε ¼ ε̂ ¼ 0), which corresponds to a degenerate
case that has not been analyzed previously. In this case, one
can only find a solution by constraining Tobs. However,
maximization of sensitivity at fixed computing cost would
then result in N → 1, i.e., a fully coherent search (except if
by increasing ΔT the template bank eventually starts to
resolve Ω and therefore breaks the degeneracy). In cases
such as the Scorpius X-1 search considered here, there is an
astrophysically motivated upper bound on the segment
length ΔT ≤ 10 d, and we therefore need to express the
optimal solution for constraints on both Tobs and ΔT. With
N and Tobs fixed, we can only optimize sensitivity over the
respective template-bank mismatches ~μmax and μ̂max. This is
achieved simply by solving Eq. (91) of Ref. [20], i.e.,
ð~μmax= ~nÞ=ðμ̂max=n̂Þ ¼ ~C=Ĉ, together with ~C þ Ĉ ¼ C0 for
μ̂max and ~μmax.
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