2,634 research outputs found
Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment
Homologous gene shuffling between DNA promotes genetic diversity and is an
important pathway for DNA repair. For this to occur, homologous genes need to
find and recognize each other. However, despite its central role in homologous
recombination, the mechanism of homology recognition is still an unsolved
puzzle. While specific proteins are known to play a role at later stages of
recombination, an initial coarse grained recognition step has been proposed.
This relies on the sequence dependence of the DNA structural parameters, such
as twist and rise, mediated by intermolecular interactions, in particular
electrostatic ones. In this proposed mechanism, sequences having the same base
pair text, or are homologous, have lower interaction energy than those
sequences with uncorrelated base pair texts; the difference termed the
recognition energy. Here, we probe how the recognition energy changes when one
DNA fragment slides past another, and consider, for the first time, homologous
sequences in antiparallel alignment. This dependence on sliding was termed the
recognition well. We find that there is recognition well for anti-parallel,
homologous DNA tracts, but only a very shallow one, so that their interaction
will differ little from the interaction between two nonhomologous tracts. This
fact may be utilized in single molecule experiments specially targeted to test
the theory. As well as this, we test previous theoretical approximations in
calculating the recognition well for parallel molecules against MC simulations,
and consider more rigorously the optimization of the orientations of the
fragments about their long axes. The more rigorous treatment affects the
recognition energy a little, when the molecules are considered rigid. However
when torsional flexibility of the DNA molecules is introduced, we find
excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures
in main text, 3 figures in supplmental. To be submitted to Journa
Gender violence in schools: taking the ‘girls-as-victims’ discourse forward
This paper draws attention to the gendered nature of violence in schools. Recent recognition that schools can be violent places has tended to ignore the fact that many such acts originate in unequal and antagonistic gender relations, which are tolerated and ‘normalised’ by everyday school structures and processes. After examining some key concepts and definitions, we provide a brief overview of the scope and various manifestations of gender violence in schools, noting that most research to date has focused on girls as victims of gender violence within a heterosexual context and ignores other forms such as homophobic and girl violence. We then move on to look at a few interventions designed to address gender violence in schools in the developing world and end by highlighting the need for more research and improved understanding of the problem and how it can be addressed
General approach to potentials with two known levels
We present the general form of potentials with two given energy levels
, and find corresponding wave functions. These entities are
expressed in terms of one function and one parameter -. We show how the quantum numbers of both levels depend on
properties of the function . Our approach does not need resorting to
the technique of supersymmetric (SUSY) quantum mechanics but automatically
generates both the potential and superpotential.Comment: 14 pages, REVTeX 3.0. In v.2 misprints and inaccuracies in
presentation corrected, discussion of 3-dim. case added. In v.3 misprint in
eq. 41, several typos and inaccuracies in English corrected. To be published
in J. of Phys. A: Math. Ge
Lie symmetries for two-dimensional charged particle motion
We find the Lie point symmetries for non-relativistic two-dimensional charged
particle motion. These symmetries comprise a quasi-invariance transformation, a
time-dependent rotation, a time-dependent spatial translation and a dilation.
The associated electromagnetic fields satisfy a system of first-order linear
partial differential equations. This system is solved exactly, yielding four
classes of electromagnetic fields compatible with Lie point symmetries
Reconstructing the primordial power spectrum - a new algorithm
We propose an efficient and model independent method for reconstructing the
primordial power spectrum from Cosmic Microwave Background (CMB) and large
scale structure observations. The algorithm is based on a Monte Carlo principle
and therefore very simple to incorporate into existing codes such as Markov
Chain Monte Carlo. The algorithm has been used on present cosmological data to
test for features in the primordial power spectrum. No significant evidence for
features is found, although there is a slight preference for an overall bending
of the spectrum, as well as a decrease in power at very large scales. We have
also tested the algorithm on mock high precision CMB data, calculated from
models with non-scale invariant primordial spectra. The algorithm efficiently
extracts the underlying spectrum, as well as the other cosmological parameters
in each case. Finally we have used the algorithm on a model where an artificial
glitch in the CMB spectrum has been imposed, like the ones seen in the WMAP
data. In this case it is found that, although the underlying cosmological
parameters can be extracted, the recovered power spectrum can show significant
spurious features, such as bending, even if the true spectrum is scale
invariant.Comment: 22 pages, 12 figures, matches JCAP published versio
Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation
If the mass excess of neutron-deficient nuclei and their neutron-rich mirror
partners are both known, it can be shown that deviations of the Isobaric Mass
Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a
cubic term was probed by using the atomic mass of neutron-rich magnesium
isotopes measured using the TITAN Penning trap and the recently measured
proton-separation energies of Cl and Ar. The atomic mass of
Mg was found to be within 1.6 of the value stated in the Atomic
Mass Evaluation. The atomic masses of Mg were measured to be both
within 1, while being 8 and 34 times more precise, respectively. Using
the Mg mass excess and previous measurements of Cl we uncovered a
cubic coefficient of = 28(7) keV, which is the largest known cubic
coefficient of the IMME. This departure, however, could also be caused by
experimental data with unknown systematic errors. Hence there is a need to
confirm the mass excess of S and the one-neutron separation energy of
Cl, which have both come from a single measurement. Finally, our results
were compared to ab initio calculations from the valence-space in-medium
similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform
ARRIVE Checklist. (DOCX 42 kb
- …