296 research outputs found

    Acoustic telemetry and network analysis reveal the space use of multiple reef predators and enhance marine protected area design

    Get PDF
    Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like overfishing. Ideally, MPA design should incorporate movement data from multiple target species to ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to determine the fine-scale space use of five shark and one turtle species at a remote atoll in the Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. Defining the MPA's boundary from the edge of the reef flat at low tide instead of the beach at high tide (the current best in Seychelles) significantly increased the MPA's coverage of predator movements by an average of 34%. Informed by these results, the larger MPA was adopted by the Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by affecting policy directly

    At the Turn of the Tide: Space Use and Habitat Partitioning in Two Sympatric Shark Species Is Driven by Tidal Phase

    Get PDF
    Coexistence of ecologically similar species occupying the same geographic location (sympatry) poses questions regarding how their populations persist without leading to competitive exclusion. There is increasing evidence to show that micro-variations in habitat use may promote coexistence through minimizing direct competition for space and resources. We used two sympatric marine predators that show high fidelity to a small, remote coral atoll as a model to investigate how temporally dynamic partitioning of space use may promote coexistence. Using novel methods (difference network analysis and dynamic space occupancy analysis), we revealed that even though blacktip reef sharks Carcharhinus melanopterus and sicklefin lemon sharks Negaprion acutidens both show focused use of the same atoll habitats, the spatio-temporal dynamics of their use was partitioned such that they only shared the same microhabitats 26% of the time. Moreover, the degree of overlap was strongly influenced by the tidal cycle, peaking at ∼35% at higher tides as both species appear to target similar intertidal micro-habitats despite the increase in available space. Our work provides a rare example of how two marine predators with similar ecological roles and habitat preferences may coexist in the same place through dynamic segregation of habitat use in space and time, potentially reflecting adaptive behavioral traits for minimizing interactions. The strong influence of small tidal variation on species habitat use and partitioning also raises concerns over how atoll ecosystem dynamics may be influenced by sea level rises that could alter tidal dynamics

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    Tracking of unpredictable moving stimuli by pigeons

    Get PDF
    Despite being observed throughout the animal kingdom, catching a moving object is a complex task and little is known about the mechanisms that underlie this behavior in non-human animals. Three experiments examined the role of prediction in capture of a moving object by pigeons. In Experiment 1, a stimulus moved in a linear trajectory, but sometimes made an unexpected 90o turn. The sudden turn had only a modest effect on capture and error location, and the analyses suggested that the birds had adjusted their tracking to the novel motion. In Experiment 2, the role of visual input during a turn was tested by inserting disappearances (either 1.5 cm or 4.5 cm) on both the straight and turn trials. The addition of the disappearance had little effect on capture success, but delayed capture location with the larger disappearance leading to greater delay. Error analyses indicated that the birds adapted to the post-turn, post-disappearance motion. Experiment 3 tested the role of visual input when the motion disappeared behind an occluder and emerged in either a straight line or at a 90o angle. The occluder produced a disruption in capture success but did not delay capture. Error analyses indicated that the birds did not adjust their tracking to the new motion on turn trials following occlusion. The combined results indicate that pigeons can anticipate the future position of a stimulus, and can adapt to sudden, unpredictable changes in motion but do so better after a disappearance than after an occlusion

    A comparative evaluation of the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instruments: an in vitro profilometric and SEM study

    Full text link
    OBJECTIVES: The debridement of diseased root surface is usually performed by mechanical scaling and root planing using manual and power driven instruments. Many new designs in ultrasonic powered scaling tips have been developed. However, their effectiveness as compared to manual curettes has always been debatable. Thus, the objective of this in vitro study was to comparatively evaluate the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instrumentation on periodontally involved extracted teeth using profilometer and scanning electron microscope (SEM). MATERIAL AND METHODS: 30 periodontally involved extracted human teeth were divided into 3 groups. The teeth were instrumented with hand and ultrasonic instruments resembling clinical application. In Group A all teeth were scaled with a new universal hand curette (Hu Friedy Gracey After Five Vision curette; Hu Friedy, Chicago, USA). In Group B Cavitron(TM) FSI - SLI(TM) ultrasonic device with focused spray slimline inserts (Dentsply International Inc., York, PA, USA) were used. In Group C teeth were scaled with an EMS piezoelectric ultrasonic device with prototype modified PS inserts. The surfaces were analyzed by a Precision profilometer to measure the surface roughness (Ra value in µm) consecutively before and after the instrumentation. The samples were examined under SEM at magnifications ranging from 17x to 300x and 600x. RESULTS: The mean Ra values (µm) before and after instrumentation in all the three groups A, B and C were tabulated. After statistically analyzing the data, no significant difference was observed in the three experimental groups. Though there was a decrease in the percentage reduction of Ra values consecutively from group A to C. CONCLUSION: Within the limits of the present study, given that the manual, magnetostrictive and piezoelectric ultrasonic instruments produce the same surface roughness, it can be concluded that their efficacy for creating a biologically compatible surface of periodontally diseased teeth is similar

    Older adults' attitudes about continuing cancer screening later in life: a pilot study interviewing residents of two continuing care communities

    Get PDF
    BACKGROUND: Individualized decision making has been recommended for cancer screening decisions in older adults. Because older adults' preferences are central to individualized decisions, we assessed older adults' perspectives about continuing cancer screening later in life. METHODS: Face to face interviews with 116 residents age 70 or over from two long-term care retirement communities. Interview content included questions about whether participants had discussed cancer screening with their physicians since turning age 70, their attitudes about information important for individualized decisions, and their attitudes about continuing cancer screening later in life. RESULTS: Forty-nine percent of participants reported that they had an opportunity to discuss cancer screening with their physician since turning age 70; 89% would have preferred to have had these discussions. Sixty-two percent believed their own life expectancy was not important for decision making, and 48% preferred not to discuss life expectancy. Attitudes about continuing cancer screening were favorable. Most participants reported that they would continue screening throughout their lives and 43% would consider getting screened even if their doctors recommended against it. Only 13% thought that they would not live long enough to benefit from cancer screening tests. Factors important to consider stopping include: age, deteriorating or poor health, concerns about the effectiveness of the tests, and doctors recommendations. CONCLUSION: This select group of older adults held positive attitudes about continuing cancer screening later in life, and many may have had unrealistic expectations. Individualized decision making could help clarify how life expectancy affects the potential survival benefits of cancer screening. Future research is needed to determine whether educating older adults about the importance of longevity in screening decisions would be acceptable, affect older adults' attitudes about screening, or change their screening behavior

    Two Odorant-Binding Proteins Mediate the Behavioural Response of Aphids to the Alarm Pheromone (E)-ß-farnesene and Structural Analogues

    Get PDF
    Abstract Background: Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals. Methodology/Principal Findings: To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone. Conclusions: Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests

    Population Structure as Revealed by mtDNA and Microsatellites in Northern Fur Seals, Callorhinus ursinus, throughout Their Range

    Get PDF
    Background: The northern fur seal (Callorhinus ursinus; NFS) is a widely distributed pinniped that has been shown to exhibit a high degree of philopatry to islands, breeding areas on an island, and even to specific segments of breeding areas. This level of philopatry could conceivably lead to highly genetically divergent populations. However, northern fur seals have the potential for dispersal across large distances and have experienced repeated rapid population expansions following glacial retreat and the more recent cessation of intensive harvest pressure. Methodology/Principal Findings: Using microsatellite and mitochondrial loci, we examined population structure in NFS throughout their range. We found only weak population genetic structure among breeding islands including significant FST and W ST values between eastern and western Pacific islands. Conclusions: We conclude that insufficient time since rapid population expansion events (both post glacial and following the cessation of intense harvest pressure) mixed with low levels of contemporary migration have resulted in an absence of genetic structure across the entire northern fur seal range

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms
    • …
    corecore