22,537 research outputs found

    A survey of manufacturers of solar thermal energy systems

    Get PDF
    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes

    Stress analysis of a doubly-curved skin with a flared nozzle port, phase v annual summary report

    Get PDF
    Computer method for stress and deflection calculation of nozzle flow openings in large pressure vessels

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Quantum Versus Mean Field Behavior of Normal Modes of a Bose-Einstein Condensate in a Magnetic Trap

    Full text link
    Quantum evolution of a collective mode of a Bose-Einstein condensate containing a finite number N of particles shows the phenomena of collapses and revivals. The characteristic collapse time depends on the scattering length, the initial amplitude of the mode and N. The corresponding time values have been derived analytically under certain approximation and numerically for the parabolic atomic trap. The revival of the mode at time of several seconds, as a direct evidence of the effect, can occur, if the normal component is significantly suppressed. We also discuss alternative means to verify the proposed mechanism.Comment: minor corrections are introduced into the tex

    Diassociative algebras and Milnor's invariants for tangles

    Full text link
    We extend Milnor's mu-invariants of link homotopy to ordered (classical or virtual) tangles. Simple combinatorial formulas for mu-invariants are given in terms of counting trees in Gauss diagrams. Invariance under Reidemeister moves corresponds to axioms of Loday's diassociative algebra. The relation of tangles to diassociative algebras is formulated in terms of a morphism of corresponding operads.Comment: 17 pages, many figures; v2: several typos correcte

    What is a crystal?

    Get PDF
    Almost 25 years have passed since Shechtman discovered quasicrystals, and 15 years since the Commission on Aperiodic Crystals of the International Union of Crystallography put forth a provisional definition of the term crystal to mean ``any solid having an essentially discrete diffraction diagram.'' Have we learned enough about crystallinity in the last 25 years, or do we need more time to explore additional physical systems? There is much confusion and contradiction in the literature in using the term crystal. Are we ready now to propose a permanent definition for crystal to be used by all? I argue that time has come to put a sense of order in all the confusion.Comment: Submitted to Zeitschrift fuer Kristallographi

    Equivariant pretheories and invariants of torsors

    Full text link
    In the present paper we introduce and study the notion of an equivariant pretheory: basic examples include equivariant Chow groups, equivariant K-theory and equivariant algebraic cobordism. To extend this set of examples we define an equivariant (co)homology theory with coefficients in a Rost cycle module and provide a version of Merkurjev's (equivariant K-theory) spectral sequence for such a theory. As an application we generalize the theorem of Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a G-equivariant pretheory we associate a graded ring which serves as an invariant of E. In the case of Chow groups this ring encodes the information concerning the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous preprint: the construction of an equivariant cycle (co)homology and the spectral sequence (generalizing the long exact localization sequence) are adde

    A Study of the Shortest-Period Planets Found With Kepler

    Get PDF
    We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra--short-period, or USP, planets), using data from the {\em Kepler} spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R⊕R_\oplus, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51±0.07)%(0.51\pm 0.07)\% of G-dwarf stars, and (0.83±0.18)%(0.83\pm 0.18)\% of K-dwarf stars.Comment: 20 pages, 10 figures. Submitted to ApJ. This version has been reviewed by a refere
    • …
    corecore