https://ntrs.nasa.gov/search.jsp?R=19650016446 2020-03-17T01:44:08+00:00Z

÷

.

1

7

.

¥

* 13

Sec. And

and the second

Sale and

1_{6 g}.

. آلا

	*, *
٢-	•
•	
	·
	1999 - The State of S
" N65-260 ́ 7	
(ACCESSION NUMBER) (THRU)	GPO PRICE S
(CODE) (CODE)	OTS PRICE(S) \$
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)	
	Hard copy (HC)
	Microfiche (MF) <u>/ · //</u>

RAC 1452-6 15 May 1965

Annual Summary Report for PHASE V: STRESS ANALYSIS OF A DOUBLY-CURVED SKIN WITH A FLARED NOZZLE PORT

्युष्ट क

·. ·

Contract NAS 8-2698 (RAC 1452-6)

Submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION George C. Marshall Space Flight Center Huntsville, Alabama

REPUBLIC AVIATION CORPORATION Farmingdale, L.I., N.Y. 11735

FOREWORD

This report was prepared by Drs. I.U. Ojalvo, M. Newman, M. Goldberg and Mr. N. Levine of Republic Aviation Corporation, Farmingdale, New York, under Contract NAS 8-2698, "Stress Analysis of a Doubly-Curved Skin with a Flared Nozzle Port."

The work was administered under the direction of Mr. David Hoppers of the Manufacturing Engineering Laboratory through Mr. Norman Schlemmer of the Propulsion and Vehicle Engineering Laboratory of the George C. Marshall Space Flight Center.

The Republic Program Manager is Dr. R. S. Levy.

F

ľ

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions of the following company personnel: Dr. M. Forray and Mr. M. Gershinsky for technical consultations and Programmers E. Leo, C. Williamson, S. Kalman, and G. Wenderoth for programming the many subroutines involved in the computer application of the analysis.

SUMMARY

ł

26047

An analysis to determine the stresses and deflections caused by comparatively small flared nozzle openings in large pressure vessels and an associated digital computer program are described. The structural problem is idealized as a shell of revolution with axis normal to a thin, shallow, parent shell which is not axisymmetrical. The midsurfaces of the two shells are assumed to mate at a common intersecting circle and the entire configuration is subjected to internal pressurization and membrane edge forces.

Author

TABLE OF CONTENTS

Section

ļ

ŀ

P

}

ŀ

	FOREWORD	iii
	SUMMARY	v
Ι	INTRODUCTION	1
п	 CYLINDER-FLARE ANALYSIS A. Introduction B. Formulation of Basic Equations C. Boundary Conditions D. Finite Difference Formulation and Matrix Solution of the Difference Equations E. Unit Solutions 	5 5 17 20 25
Ш	 DOME ANALYSIS A. Introduction B. Boundary Conditions C. Solution of the Problem: Elliptic-Paraboloidal Shell 	27 27 31 36
IV	FLARE-DOME SHELL POINT-MATCHING A. Introduction B. Point-Matching C. Least-Squares	53 53 53 55
v	 COMPUTER PROGRAM A. Introduction B. Geometry of Flare C. Dome Geometry D. Point-Matching E. Nomenclature and Program Flow Charts 	59 59 60 62 63 64
VI	REFERENCES	67
Appendix I Appendix II		69 75
Appendix III		77
Appendix IV		101

SECTION I INTRODUCTION

ľ

ŀ

ľ

The evaluation of the magnitude of stresses in the neighborhood of nozzle ports is a technically important problem in the design of pressurized fuel tanks. Concurrent with stress concentration effects, resulting from geometric discontinuities, the nozzles serve as localized loading points which can transmit both thrusts and bending moments to the primary shell. Problems of this nature occur in the elliptical end closures of large boosters of the Saturn type, as well as with pressure vessels in the form of, spheres, cylinders, and tori (see Figure 1).

Recognizing a need for efficient nozzle fabrication techniques, Republic Aviation Corporation has recently developed a method of drawing flared nozzles from curved thin shells Reference [1]. Using the developed technique, the specific location of the nozzle drawing axis and the angle made with the local shell normal are quite arbitrary, thus enhancing the possibilities of the technique for general and, in particular, space vehicle applications. A significant advantage of the nozzle-forming procedure, is that it eliminates the need for complex weldments along awkward nozzle-shell junctions.

Although shell-nozzle interaction problems are of practical importance, comparatively little analytical work has been published in this area. Notable contributions have been made by Bijlaard [2, 3, 4] and Galletly [5] in the analysis of discontinuity stresses adjacent to central circular opening in spherical caps. In addition, Conway and Lissa [6] have considered the oblique intersection of a rigid cylinder with a shallow spherical shell. However, questions regarding the influence of unequal radii of curvature in the pressure vessel, at nozzle junctions, have remained unanswered.

This document describes a general approximate procedure for determining the stresses and deflections in flared nozzles with axes normal to comparatively large pressure vessels, as well as the stress distribution in the parent shell near the nozzle junction. Expressions for these discontinuity stress are derived

Figure 1a. Oblate Spheroid (Ellipsoid) Intersected by a Circular Cylinder With Axis Along a Surface Normal

Figure 1b. Circular Cylinder Intersected Normally by a Second Circular Cylinder

Figure 1c. Circular Torus Intersected by a Circular Cylinder with Axis along a Surface Normal

for an idealized model, which brings out the salient features of the problem.

ľ

ļ

ŀ

ŀ

₿

It is assumed that the nozzle geometry, exclusive of the parent dome shell, can be approximated (see Figure 2) by a surface of revolution, consisting of a right circular cylinder joined to a bell-mouthed shell of variable thickness. The nozzle axis is taken normal to a thin, shallow, parent shell of double curvature which is idealized as a segment of an elliptic paraboloid. Because of the shallowness of the dome segment and the coincidence of nozzle axis and local shell normal, the curve describing the intersecting shells can be approximated as a circle. The entire system is subjected to internal pressure and it is assumed that membrane boundary conditions exist at the top of the cylinder and at the edges of the dome segment.

Sections II and III present the mathematical models for the cylinder-flare combination and dome, respectively. The analytical and numerical solution procedures associated with generating solution families for each are complete in their respective sections. Section IV deals with the joining of these two segments to form a composite shell by a point-matching [7, 8] scheme with least squares option.

The computer program, which numerically generates the appropriate solution families, joins the shell segments, and calculates the overall stresses and deformations, is described in Section V. A complete set of operating instructions is contained in the separate companion report entitled, "User's Manual for Stress Analysis of a Doubly-Curved Skin with a Flared Nozzle Port," Republic Aviation Corporation Report No. RAC 1452-7, dated 15 May 1965. Concurrent with the submission of this report, the computer program is being made available to the National Aeronautics and Space Adminstration, where it will be applied to the analysis of specific test problems.

SECTION II CYLINDER-FLARE ANALYSIS

A. INTRODUCTION

The following development describes the general numerical procedures, based on Flugge's linear elastic shell equations [9], for determining the stresses and deflections in the cylinder-flare portion of the composite shell. It is assumed that the nozzle geometry, exclusive of the parent dome shell, can be approximated by a surface of revolution, consisting of a circular cylinder joined to a bell mouthed shell of variable thickness. Because of the axisymmetric shape of the flare model, it is possible to expand all dependent variables into Fourier series in the circumferential direction such that the Fourier coefficients are functions only of the meridional coordinate. The shell equations then yield an uncoupled set of ordinary differential equations for the coefficients of each Fourier component. Finite difference forms of these equations are then solved by a modification of the matrix methods employed in Reference [10].

B. FORMULATION OF BASIC EQUATIONS

The flare consists of a shell of revolution (Figure 3) of variable wall thickness, t. The distance along the middle-surface meridional curve, measured from an edge of the shell is denoted by x; the normal distance from the axis to the curve by r(x). The functions $r_1(x)$ and $r_2(x)$ describe the meridional and hoop radii of curvature of the middle surface, respectively.

The exact equilibrium equations of a differential shell element in terms of force and moment resultants are given by [9]

$$(\mathbf{r} \mathbf{N}_{\phi})^{\bullet} + \mathbf{r}_{1} \mathbf{N}_{\theta\phi}^{\prime} - \mathbf{r}_{1} \mathbf{N}_{\theta} \cos \phi - \mathbf{r} \mathbf{Q}_{\phi} = -\mathbf{r} \mathbf{r}_{1} \mathbf{p}_{\phi}$$
(1a)

$$(\mathbf{rN}_{\phi\theta})^{\bullet} + \mathbf{r}_{1}\mathbf{N}_{\theta}^{\prime} + \mathbf{r}_{1}\mathbf{N}_{\theta\phi}\cos\phi - \mathbf{r}_{1}\mathbf{Q}_{\theta}\sin\phi = -\mathbf{rr}_{1}\mathbf{p}_{\theta}$$
(1b)

$$\mathbf{r}_{1} \mathbf{N}_{\theta} \sin \phi + \mathbf{r} \mathbf{N}_{\phi} + \mathbf{r}_{1} \mathbf{Q}_{\theta}' + (\mathbf{r} \mathbf{Q}_{\phi})' = \mathbf{r} \mathbf{r}_{1} \mathbf{p}$$
(1c)

$$(\mathbf{r} \mathbf{M}_{\phi})^{*} + \mathbf{r}_{1} \mathbf{M}_{\theta \phi}^{\prime} - \mathbf{r}_{1} \mathbf{M}_{\theta} \cos \phi = \mathbf{r} \mathbf{r}_{1} \mathbf{Q}_{\phi}$$
(1d)

$$(\mathbf{r} \mathbf{M}_{\phi \theta})^{\cdot} + \mathbf{r}_{1} \mathbf{M}_{\theta}^{\prime} + \mathbf{r}_{1} \mathbf{M}_{\theta \phi} \cos \phi = \mathbf{r} \mathbf{r}_{1} \mathbf{Q}_{\theta}$$
(1e)

$$\frac{M_{\phi\theta}}{r_1} - \frac{M_{\theta\phi}}{r_2} = N_{\phi\theta} - N_{\theta\phi} , \qquad (1f)$$

where

()' =
$$\frac{\partial \phi}{\partial \phi}$$
 (),
()' = $\frac{\partial \phi}{\partial \phi}$ (),

p, p_{ϕ} and p_{θ} are the shell loads per unit of middle surface area in the ζ , ϕ and θ directions, respectively (Figure 3), and

Figure 3. Flare Geometry

$$N_{\phi} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\phi\phi} \frac{r_2 + \zeta}{r_2} d\zeta$$
(2a)

$${}^{N}\theta = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\theta \theta} \frac{r_{1} + \zeta}{r_{1}} d\zeta$$
(2b)

$$N_{\theta\phi} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\theta\phi} \frac{r_1 + \zeta}{r_1} d\zeta$$
(2c)

$$N_{\phi\theta} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\phi\theta} \frac{\mathbf{r}_{2} + \boldsymbol{\zeta}}{\mathbf{r}_{2}} d\boldsymbol{\zeta}$$
(2d)

$$\mathbf{M}_{\phi} = -\int_{-\frac{\mathbf{t}}{2}}^{\frac{\mathbf{t}}{2}} \sigma_{\phi\phi} \frac{\mathbf{r}_{2} + \boldsymbol{\zeta}}{\mathbf{r}_{2}} \boldsymbol{\zeta} \, d\boldsymbol{\zeta}$$
(2e)

.

$$M_{\theta} = -\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\theta\theta} \frac{r_{1} + \zeta}{r_{1}} \zeta d\zeta$$
(2f)

$$\mathbf{M}_{\theta\phi} = -\int_{-\frac{\mathbf{t}}{2}}^{\frac{\mathbf{t}}{2}} \sigma_{\theta\phi} \frac{\mathbf{r}_{1} + \zeta}{\mathbf{r}_{1}} \zeta d\zeta$$
(2g)

$$\mathbf{M}_{\phi \theta} = -\int_{-}^{-} \frac{\mathbf{t}}{2} \sigma_{\phi \theta} \frac{\mathbf{r}_{2} + \boldsymbol{\zeta}}{\mathbf{r}_{2}} \boldsymbol{\zeta} \, \mathrm{d}\boldsymbol{\zeta}$$
(2h)

$$\mathbf{Q}_{\phi} = -\int_{-\frac{\mathbf{t}}{2}}^{\frac{\mathbf{t}}{2}} \sigma_{\phi\zeta} \frac{\mathbf{r}_{2} + \zeta}{\mathbf{r}_{2}} d\zeta$$
(2i)

$$Q_{\theta} = -\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{\theta\zeta} \frac{r_{1} + \zeta}{r_{1}} d\zeta$$
(2j)

The stress components σ_{ij} $\begin{pmatrix} i = \phi, \theta \\ j = \phi, \theta, \zeta \end{pmatrix}$ are defined in accordance with conventional theory of elasticity notation. As a consequence, the force and moment resultants defined by equations (1) and (2) are positive when acting as shown in Figures 2c through 2e.

Equation (1f) is an identity which follows from the definitions of the force and moment resultants given by equations (2c), (2d), (2g), and (2h). Equations (1a) through (1e), therefore, constitute five independent equations involving ten resultants. The required connecting equations are provided by the constitutive relations [9]:

$$N_{\phi} = D\left[\frac{\mathbf{v}^{\cdot} + \mathbf{w}}{\mathbf{r}_{1}} + \nu \frac{\mathbf{u}^{\prime} + \mathbf{v} \cos \phi + \mathbf{w} \sin \phi}{\mathbf{r}}\right] + \frac{\mathbf{K}}{\mathbf{r}_{1}^{2}} \frac{\mathbf{r}_{2}^{2} - \mathbf{r}_{1}}{\mathbf{r}_{2}} \left[\frac{\mathbf{v} - \mathbf{w}^{\cdot}}{\mathbf{r}_{1}} \frac{\mathbf{r}_{1}^{\cdot}}{\mathbf{r}_{1}} + \frac{\mathbf{w}^{\cdot} + \mathbf{w}}{\mathbf{r}_{1}}\right], \qquad (3a)$$

$$N_{\theta} = D\left[\frac{u' + v\cos\phi + w\sin\phi}{r} + v\frac{v' + w}{r_{1}}\right]$$
$$-\frac{K}{rr_{1}} \frac{r_{2} - r_{1}}{r_{2}} \left[-\frac{v}{r_{1}}\frac{r_{2} - r_{1}}{r_{2}}\cos\phi + \frac{w\sin\phi}{r_{2}} + \frac{w''}{r} + \frac{w'\cos\phi}{r_{1}}\right], \quad (3b)$$

$$N_{\phi\theta} = D \frac{1-\nu}{2} \left[\frac{u}{r_1} + \frac{v'-u\cos\phi}{r} \right] + \frac{K}{r_1^2} \frac{1-\nu}{2} \frac{r_2-r_1}{r_2} \left[\frac{u}{r_1} \frac{r_2-r_1}{r_2} + \frac{u}{r_2} \frac{r_1-r_2}{r_2} \cot\phi + \frac{w'}{r} - \frac{w'}{r} \frac{r_1}{r_1} \cos\phi \right], \quad (3c)$$

$$N_{\theta\phi} = D \frac{1-\nu}{2} \left[\frac{\mathbf{u}}{\mathbf{r}_{1}} + \frac{\mathbf{v}'-\mathbf{u}\cos\phi}{\mathbf{r}} \right] + \frac{\mathbf{K}}{\mathbf{r}\mathbf{r}_{1}} \frac{1-\nu}{2} \frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{\mathbf{r}_{2}} \left[\frac{\mathbf{v}'}{\mathbf{r}_{1}} \frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{\mathbf{r}_{2}} - \frac{\mathbf{w}'}{\mathbf{r}_{1}} + \frac{\mathbf{w}'\cos\phi}{\mathbf{r}} \right], \quad (3d)$$

$$M_{\phi} = K \left[\frac{1}{r_{1}^{2}} \left(w^{*} - w^{*} \frac{r_{1}^{*}}{r_{1}} - w \frac{r_{1} - r_{2}}{r_{2}} \right) - \frac{v^{*}}{r_{1}r_{2}} + \frac{v}{r_{1}^{2}} \frac{r_{1}^{*}}{r_{1}} + v \frac{w^{*} \cos\phi}{r_{1}r_{1}} - v \frac{u^{'}}{r_{2}} - v \frac{v \cos\phi}{r_{1}r_{1}} \right], \qquad (3e)$$

$$M_{\theta} = K \left[\frac{w''}{r^2} + \frac{w \cdot \cos\phi}{r r_1} - \frac{w}{r_2^2} \frac{r_2 - r_1}{r_1} - \frac{u'}{r r_1} - \frac{v \cos\phi}{r r_1} \frac{2r_2 - r_1}{r_2} + \frac{\nu}{r_1^2} \left(w \cdot \cdot - w \cdot \frac{r_1^2}{r_1} \right) - \frac{\nu}{r_1^2} \left(v \cdot - v \frac{r_1^2}{r_1} \right) \right], \qquad (3f)$$

$$M_{\phi\theta} = K \frac{1-\nu}{2} \left[2 \frac{w'}{rr_{1}} - 2 \frac{w'}{r^{2}} \cos\phi - \frac{u}{r_{1}r_{2}} \frac{2r_{1}-r_{2}}{r_{1}} + \frac{u}{r_{2}^{2}} \frac{2r_{1}-r_{2}}{r_{1}} \cot\phi - \frac{v'}{rr_{1}} \right], \qquad (3g)$$

$$M_{\theta\phi} = K \frac{1-\nu}{2} \left[2 \frac{w'}{rr_1} - 2 \frac{w'}{r^2} \cos\phi - \frac{u}{r_1r_2} + \frac{u}{r_2^2} \cot\phi - \frac{v'}{rr_1} \frac{2r_2-r_1}{r_2} \right] \quad (3h)$$

where u, v, w are the middle surface displacements in the circumferential, meridional and normal directions, respectively (see Figure 4a), and

$$D = \frac{Et}{1-\nu^2}$$
(4a)

$$K = \frac{Et^3}{12(1-\nu^2)}$$
(4b)

Equations (3) are based on the Kirchoff-Love hypothesis, which assumes the preservation of normals to the middle surface during deformation, and neglects direct stresses $(\sigma_{\zeta\zeta})$. Equations (3), however, are based upon the retention of thickness-curvature terms up to the order of $(\frac{t}{r})^3$ and $(\frac{t}{r})^3$ in the strain-displacement relations and stress resultant expressions, whereas, in the usual thin shell theory, founded on Love's first approximation [11], first powers of these quantities are neglected in comparison with unity.

The set of field equations given by (1a) through (1e) and (3a) through (3h) constitute thirteen independent relations in the thirteen field quantities N_{ϕ} , N_{θ} , $N_{\theta\phi}$, $N_{\phi\theta}$, $M_{\phi\theta}$, $M_{$

* NOTE:

USE RIGHT - HAND RULE FOR MOMENT AND ROTATION VECTORS

a.

Displacements

Rotations *

c. Tangential Force Resultants

d. Transverse Force Resultants

e.

Moments *

Figure 4. Sign Conventions

$$\begin{cases} \mathbf{N}_{\phi} \\ \mathbf{N}_{\theta} \\ \mathbf{N}_{\theta} \end{cases} = \sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \begin{cases} \mathbf{t}_{\mathbf{s}}^{\mathbf{n}} \\ \mathbf{t}_{\theta}^{\mathbf{n}} \end{cases} \cos \mathbf{n}\theta$$

$$\begin{cases} \mathbf{N}_{\theta\phi} \\ \mathbf{N}_{\phi\theta} \\ \mathbf{N}_{\phi\theta} \end{cases} = \sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}} \sum_{\mathbf{n}=1}^{\infty} \begin{cases} \mathbf{t}_{\theta\mathbf{s}}^{\mathbf{n}} \\ \mathbf{t}_{\mathbf{s}\theta}^{\mathbf{n}} \end{cases} \sin \mathbf{n}\theta$$

$$\begin{pmatrix} \mathbf{M}_{\phi} \\ \mathbf{M}_{\theta} \end{pmatrix} = \frac{\sigma_{\mathbf{c}} \mathbf{r}_{\mathbf{c}}^{3}}{\mathbf{r}_{\mathbf{c}}} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \begin{pmatrix} \mathbf{m}_{\mathbf{s}}^{\mathbf{n}} \\ \mathbf{m}_{\theta}^{\mathbf{n}} \end{pmatrix} \cos \mathbf{n}\theta$$

$$\begin{pmatrix} \mathbf{M}_{\theta} \phi \\ \mathbf{M}_{\phi\theta} \end{pmatrix} = \frac{\sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}}^{3}}{\mathbf{r}_{\mathbf{c}}} \sum_{\mathbf{n}=1}^{\infty} \begin{pmatrix} \mathbf{m}_{\theta s}^{\mathbf{n}} \\ \mathbf{m}_{s\theta}^{\mathbf{n}} \end{pmatrix} \sin \mathbf{n}\theta$$
(5)

$$\mathbf{Q}_{\phi} = \sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}} \sum_{\mathbf{n}=0}^{\infty} \mathbf{f}_{\mathbf{s}}^{\mathbf{n}} \cos \mathbf{n}\theta$$

m

$$Q_{\theta} = \sigma_{c} t_{c} \sum_{n=1}^{\infty} f_{\theta}^{n} \sin n\theta$$

$$\mathbf{u} = \frac{\mathbf{r}_{\mathbf{c}} \sigma_{\mathbf{c}}}{\mathbf{E}} \sum_{\mathbf{n}=1}^{\infty} \mathbf{u}_{\theta}^{\mathbf{n}} \sin \mathbf{n} \theta$$

$$\begin{cases} \mathbf{v} \\ \mathbf{w} \end{cases} = \frac{\mathbf{r}_{\mathbf{c}} \sigma_{\mathbf{c}}}{\mathbf{E}} \sum_{\mathbf{n}=0}^{\infty} \left\{ \mathbf{u}_{\mathbf{s}}^{\mathbf{n}} \right\} \cos \mathbf{n} \theta$$

$$\begin{cases} \mathbf{p} \\ \mathbf{p}_{\phi} \\ \mathbf{p}_{\phi} \\ \end{pmatrix} = \frac{\sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}}}{\mathbf{r}_{\mathbf{c}}} \sum_{\mathbf{n}=0}^{\infty} \begin{pmatrix} \mathbf{p}^{\mathbf{n}} \\ \mathbf{p}_{\mathbf{n}}^{\mathbf{n}} \\ \mathbf{p}_{\mathbf{n}}^{\mathbf{n}} \\ \end{pmatrix} \cos \mathbf{n} \\ \end{pmatrix}$$

$$p_{\theta} = \frac{\sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}}}{\mathbf{r}_{\mathbf{c}}} \sum_{\mathbf{n}=1}^{\infty} p_{\theta}^{\mathbf{n}} \sin \mathbf{n} \\ \end{pmatrix}$$

$$(6)$$

The quantities σ_c , t_c and r_c represent a reference stress level, thickness and radial dimension of the shell, respectively, which tend to normalize the dimensionless Fourier coefficients t_s^n , t_{θ}^n , ..., w^n . The expansions (5) and (6) and the development which follows are valid for loads and boundary conditions which produce symmetric deformations about the plane $\theta = 0$. Antisymmetric problems can be accommodated by interchanging the roles of sin $n\theta$ and cos $n\theta$ in Equations (5) and (6). Solutions for general asymmetric loading conditions can then be obtained by decomposing the complete problem into symmetric and antisymmetric components.

If Equations (5) and (6) are substituted into (1) and (3) the equations for the Fourier coefficients decouple into separate sets for each Fourier index n. Each set constitutes an eighth order system of ordinary differential equations with the meridional coordinate x as independent variable. To facilitate subsequent numerical computations, it is convenient to express the nth general system as four second order differential equations in the Fourier coefficients u_s^n , u_{θ}^n , w^n and m_s^n . This is accomplished in the following manner: Solve Equations (1d) through (1f) for Q_{ϕ} , Q_{θ} and $N_{\theta\phi}$ and substitute the resulting expressions into Equations (1a) through (1c). Next, eliminate terms (3a) and (3f) by making use of (3e). Substituting (5) and (6) into the resulting equations and considering only normal pressure loading then yields the following for the nth set of Fourier coefficients^{*}:

$$\rho \left[\gamma t_{s} + t_{s}' - \gamma t_{\theta} \right] + n t_{s\theta} - \lambda^{2} \left[\rho \omega_{s} m_{s}' + \rho \gamma \omega_{s} (m_{s} - m_{\theta}) + n (\omega_{s} - \omega_{\theta}) m_{\theta s} + n \omega_{s} m_{s\theta} \right] = 0$$

$$(7)$$

$$\rho \left[\gamma t_{s\theta} + t_{s\theta}' \right] - n t_{\theta} - \lambda^{2} \left[\rho \gamma (\omega_{s} + \omega_{\theta}) m_{s\theta} + \rho \omega_{\theta} m_{s\theta}' - n \omega_{\theta} m_{\theta} \right] = 0$$

$$(7)$$

* For convenience the superscript n on the Fourier coefficients will be omitted in the following equations.

$$-\omega_{s}t_{s} - \omega_{\theta}t_{\theta} - \lambda^{2} \left[m_{s}'' + 2\gamma m_{s}' - \omega_{s} \omega_{\theta} m_{s} - \gamma m_{\theta}' + (\omega_{s}\omega_{\theta} - \frac{n^{2}}{\rho^{2}}) m_{\theta} + \frac{n}{\rho} (m_{s\theta}' + m_{\theta}'s) + \frac{n\gamma}{\rho} (m_{s\theta} + m_{\theta}s) \right] = -p^{n}$$

$$d \left\{ w'' + \nu \gamma w' + \left[\omega_{s} (\omega_{s} - \omega_{\theta}) - \frac{\nu n^{2}}{\rho^{2}} \right] w - \omega_{\theta}u_{s}' - (\omega_{s}' + \nu \gamma \omega_{s}) u_{s} - \frac{\nu n}{\rho} \omega_{\theta} u_{\theta} \right\} - m_{s} = 0$$

$$(7 \text{ cont'd})$$

Ì

$$\mathbf{t}_{s} = \mathbf{b} \Big[\mathbf{u}_{s}' + (\omega_{s} + \nu \omega_{\theta}) \mathbf{w} + \frac{\nu \mathbf{n}}{\rho} \mathbf{u}_{\theta} + \nu \gamma \mathbf{u}_{s} \Big] + \lambda^{2} (\omega_{s} - \omega_{\theta}) \mathbf{m}_{s} + \mathbf{d} \lambda^{2} (\omega_{s} - \omega_{\theta}) \Big[(\omega_{s} \omega_{\theta} + \frac{\nu \mathbf{n}^{2}}{\rho^{2}}) \mathbf{w} + \omega_{\theta} \mathbf{u}_{s}' - \nu \gamma \mathbf{w}' + \nu \omega_{\theta} \frac{\mathbf{n}}{\rho} \mathbf{u}_{\theta} + \nu \gamma \omega_{s} \mathbf{u}_{s} \Big]$$

$$\mathbf{t}_{\theta} = \mathbf{b} \left[\frac{\mathbf{n}}{\rho} \mathbf{u}_{\theta} + \gamma \mathbf{u}_{s} + \omega_{\theta} \mathbf{w} + \nu \mathbf{u}_{s}' + \nu \omega_{s} \mathbf{w} \right] - \mathbf{d} \lambda^{2} (\omega_{s} - \omega_{\theta}) \left[\gamma (\omega_{\theta} - \omega_{s}) \mathbf{u}_{s} + (\omega_{\theta}^{2} - \frac{\mathbf{n}^{2}}{\rho^{2}}) \mathbf{w} + \gamma \mathbf{w}' \right]$$

	O١
ſ	ה
L	~ <i>,</i>

$$\begin{aligned} \mathbf{t}_{\mathbf{s}\theta} &= \mathbf{b} \left(\frac{1-\nu}{2} \right) \left[\mathbf{u}_{\theta}' - \frac{\mathbf{n}}{\rho} \mathbf{u}_{\mathbf{s}} - \gamma \mathbf{u}_{\theta} \right] \\ &+ \mathbf{d} \lambda^{2} \left(\frac{1-\nu}{2} \right) \left(\omega_{\mathbf{s}} - \omega_{\theta} \right) \left[\left(\omega_{\mathbf{s}} - \omega_{\theta} \right) \mathbf{u}_{\theta}' + \gamma \left(\omega_{\theta} - \omega_{\mathbf{s}} \right) \mathbf{u}_{\theta} \right] \\ &- \frac{\mathbf{n}}{\rho} \mathbf{w}' + \frac{\gamma \mathbf{n}}{\rho} \mathbf{w} \right] \\ \mathbf{m}_{\theta} &= \nu \mathbf{m}_{\mathbf{s}} - \mathbf{d} \left\{ \left[\omega_{\theta} \left(\omega_{\mathbf{s}} - \omega_{\theta} \right) - \nu \omega_{\mathbf{s}} \left(\omega_{\theta} - \omega_{\mathbf{s}} \right) + \left(1 - \nu^{2} \right) \frac{\mathbf{n}^{2}}{\rho^{2}} \right] \mathbf{w} \right. \\ &+ \left[\gamma \left(2\omega_{\mathbf{s}} - \omega_{\theta} \right) - \nu^{2} \gamma \omega_{\mathbf{s}} \right] \mathbf{u}_{\mathbf{s}} + \frac{\mathbf{n}}{\rho} \left(\omega_{\mathbf{s}} - \nu^{2} \omega_{\theta} \right) \mathbf{u}_{\theta} \\ &- \gamma \left(1 - \nu^{2} \right) \mathbf{w}' + \nu \left(\omega_{\mathbf{s}} - \omega_{\theta} \right) \mathbf{u}_{\mathbf{s}}' \right\} \end{aligned}$$

$$\begin{split} \mathbf{m}_{\theta \, \mathbf{s}} &= \, \mathbf{d} \, \frac{(1-\nu)}{2} \left[- \, \frac{2\mathbf{n}}{\rho} \, \mathbf{w}' + \frac{2\mathbf{n}\gamma}{\rho} \, \mathbf{w} - \, \omega_{\theta} \mathbf{u}_{\theta}' + \gamma \, \omega_{\theta} \, \mathbf{u}_{\theta} \right. \\ &+ \, \frac{\mathbf{n}}{\rho} \, \left(2\omega_{\mathbf{s}} - \, \omega_{\theta} \right) \, \mathbf{u}_{\mathbf{s}} \right] \\ \mathbf{m}_{\mathbf{s}\theta} &= \, \mathbf{d} \, \frac{(1-\nu)}{2} \left[- \frac{2\mathbf{n}}{\rho} \, \mathbf{w}' + \frac{2\mathbf{n}\gamma}{\rho} \, \mathbf{w} - \left(2\omega_{\theta} - \, \omega_{\mathbf{s}} \right) \, \mathbf{u}_{\theta}' + \gamma \left(2\omega_{\theta} - \, \omega_{\mathbf{s}} \right) \, \mathbf{u}_{\theta} \right] \\ &+ \, \frac{\mathbf{n}}{\rho} \, \omega_{\mathbf{s}} \, \mathbf{u}_{\mathbf{s}} \right] \end{split}$$
(8 cont'd)

The following dimensionless quantities and geometric identities have been employed in deriving Equations (7) and (8):

s =
$$\frac{x}{r_c}$$

 λ = $\frac{t_c}{r_c}$ (9)
d = $\frac{(t/t_c)^3}{12(1-\nu^2)}$
b = $\frac{t/t_c}{1-\nu^2}$
 ω_s = $\frac{r_c}{r_1}$
 ω_{θ} = $\frac{r_c}{r_2}$ (10)
 ρ = $\frac{r}{r_c}$

$$\sin \phi = \rho \omega_{\theta}$$

$$\cos \phi = \rho \gamma$$

$$\frac{\partial}{\partial \phi} = \frac{1}{\omega_{s}} \frac{\partial}{\partial s} = \frac{1}{\omega_{s}} ()'$$

$$\frac{\partial}{\partial s} = ()'$$

$$\omega_{\theta}' = \gamma (\omega_{s} - \omega_{\theta})$$

$$\rho' = \rho \gamma$$

$$\gamma' = -(\gamma^{2} + \omega_{s} \omega_{\theta})$$
(11)

The symbol ()', which previously indicated differentiation with respect to θ is now employed to denote differentiation with respect to s in the Fourier component Equations (7) and (8). No confusion should arise since θ has been eliminated from the latter equations by Fourier decomposition.

When Equations (8) are substituted into (7), the resulting four second order differential equations are of the form:

$$a_{1}u''_{s} + a_{2}v'_{s} + a_{3}u_{s} + a_{4}u'_{\theta} + a_{5}u_{\theta}$$

$$+ a_{5}' w'' + a_{6}w' + a_{7}w + a_{8}m'_{s} + a_{9}m_{s} = 0$$

$$a_{10}u'_{s} + a_{11}u_{s} + a_{12}u''_{\theta} + a_{13}u'_{\theta} + a_{14}u_{\theta}$$

$$+ a_{15}w'' + a_{16}w' + a_{17}w + a_{18}m_{s} = 0$$
(12)
$$a_{19}'u''_{s} + a_{19}u'_{s} + a_{20}u_{s} + a_{21}u''_{\theta} + a_{22}u'_{\theta}$$

$$+ a_{23}u_{\theta} + a_{24}w'' + a_{25}w' + a_{26}w + a_{27}m''_{s}$$

$$+ a_{28}m'_{s} + a_{29}m_{s} = -p$$

$$a_{30}u'_{s} + a_{31}u_{s} + a_{32}u_{\theta} + a_{33}w'' + a_{34}w'$$

$$+ a_{35}w + a_{36}m_{s} = 0$$

where the a's are listed in Appendix I.

ľ

l

$$E Z'' + F Z' + G Z = e$$
 (13)

where Z is the solution vector

$$Z = \begin{cases} \begin{pmatrix} u_{s} \\ u_{\theta} \\ \\ \\ w \\ \\ m_{s} \end{pmatrix}$$
(14a)

and

$$\mathbf{E} = \begin{pmatrix} \mathbf{a}_{1} & 0 & \mathbf{a}_{5}, & 0 \\ 0 & \mathbf{a}_{12} & \mathbf{a}_{15} & 0 \\ \mathbf{a}_{19}, & \mathbf{a}_{21} & \mathbf{a}_{24} & \mathbf{a}_{27} \\ 0 & 0 & \mathbf{a}_{33} & 0 \end{pmatrix}$$
(14b)

$$\mathbf{F} = \begin{pmatrix} \mathbf{a}_{2} & \mathbf{a}_{4} & \mathbf{a}_{6} & \mathbf{a}_{8} \\ \mathbf{a}_{10} & \mathbf{a}_{13} & \mathbf{a}_{16} & \mathbf{0} \\ \mathbf{a}_{19} & \mathbf{a}_{22} & \mathbf{a}_{25} & \mathbf{a}_{28} \\ \mathbf{a}_{30} & \mathbf{0} & \mathbf{a}_{34} & \mathbf{0} \end{pmatrix}$$
(14c)

١

$$G = \begin{pmatrix} a_{3} & a_{5} & a_{7} & a_{9} \\ a_{11} & a_{14} & a_{17} & a_{18} \\ a_{20} & a_{23} & a_{26} & a_{29} \\ a_{31} & a_{32} & a_{35} & a_{36} \end{pmatrix}$$
(14d)
$$e = \begin{pmatrix} 0 \\ 0 \\ -p \\ 0 \end{pmatrix}$$
(14e)

C. BOUNDARY CONDITIONS

The eighth order system of equations describing deformations of the shell must be solved subject to four appropriately specified boundary conditions at the edges S = 0 and $S = \overline{S}$. In general, physically realizable edge conditions can be written in the following form:

$$K_{11}Nc + K_{12}v = L_1$$
 (15a)

$$K_{21}\widehat{N}_{\varphi\theta} + K_{22}u = L_2$$
 (15b)

$$K_{31}\widehat{Q}_{\omega} + K_{32}w = L_3$$
 (15c)

$$K_{41}\Phi_{\varphi} + K_{42}M_{\varphi} = L_4$$
(15d)

Where K_{11}, \ldots, K_{42} and L_1, \ldots, L_4 are specified constants and the quantities not previously defined are: (a) an effective membrane shear stress, resultant

$$\widehat{N}_{\varphi\theta} = N_{\varphi\theta} - \frac{M_{\varphi\theta}}{r_2}, \qquad (16a)$$

(b) an effective transverse shear stress resultant

$$\widehat{\mathbf{Q}}_{\varphi} = \frac{1}{\mathbf{rr}_{1}} \left[\frac{\partial}{\partial \varphi} (\mathbf{rM}_{\varphi}) + \mathbf{r}_{1} \frac{\partial}{\partial \theta} (\mathbf{M}_{\theta\varphi}) - \mathbf{r}_{1} \mathbf{M}_{\theta} \cos \varphi \right] + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{M}_{\varphi} \theta}{\partial \theta} , \quad (16b)$$

and

ľ

(c) the meridional slope change

$$\Phi_{\varphi} = \frac{1}{r_1} \left[\frac{\partial w}{\partial \varphi} - v \right] , \qquad (16c)$$

(see Figure 4b).

The Fourier coefficients corresponding to these additional quantities, i.e., $\hat{t}_{s\theta}^{n}, \hat{f}_{s}^{n}$ and $\bar{\varphi}_{s}^{n}$ are defined by the expansions

$$\begin{pmatrix} \widehat{\mathbf{N}}_{\varphi\theta} \\ \widehat{\mathbf{Q}}_{\varphi} \end{pmatrix} = \sigma_{\mathbf{c}} \mathbf{t}_{\mathbf{c}} \sum_{\mathbf{n}=0}^{\infty} \begin{pmatrix} \widehat{\mathbf{t}}_{\mathbf{s}\theta}^{\mathbf{n}} & \sin \mathbf{n}\theta \\ \widehat{\mathbf{f}}_{\mathbf{s}}^{\mathbf{n}} & \cos \mathbf{n}\theta \end{pmatrix}$$

$$\Phi_{\varphi} = \frac{\sigma_{c}}{E} \sum_{n=0}^{\infty} \bar{\varphi}_{s}^{n} \cos n\theta, \qquad (17)$$

so that from (5) and (15) the boundary conditions for the n^{th} Fourier component can be written as

$$\Omega \mathbf{Y} + \mathbf{\Lambda} \mathbf{Z} = \boldsymbol{\ell} \tag{18}$$

where

$$\Omega = \begin{pmatrix}
\lambda K_{11} & 0 & 0 & 0 \\
0 & \lambda K_{21} & 0 & 0 \\
0 & 0 & \lambda K_{31} & 0 \\
0 & 0 & 0 & \frac{K_{41}}{Er_c}
\end{pmatrix}$$
(19a)
$$\Lambda = \begin{pmatrix}
\frac{K_{12}}{E} & 0 & 0 & 0 \\
0 & \frac{K_{22}}{E} & 0 & 0 \\
0 & 0 & \frac{K_{32}}{E} & 0 \\
0 & 0 & 0 & \lambda^3 r_c K_{42}
\end{pmatrix}$$
(19b)
$$\begin{pmatrix}
L_1 \\
L_2 \\
L_3 \\
L_4
\end{pmatrix} = \sigma_c r_c \sum_{n=0}^{\infty} \begin{cases}
\ell_1^n \cos n \theta \\
\ell_2^n \sin n \theta \\
\ell_4^n \cos n \theta \\
\ell_4^n \cos n \theta
\end{pmatrix}$$
(19c)

and

$$\mathbf{Y} = \begin{pmatrix} \mathbf{t}_{\mathbf{s}} \\ \mathbf{\hat{t}}_{\mathbf{s}\theta} \\ \mathbf{\hat{f}}_{\mathbf{s}} \\ \mathbf{\overline{\mathcal{T}}}_{\mathbf{s}} \end{pmatrix}$$

(20)

In order to express the boundary conditions entirely in terms of the solution vector z, Equations (16) are first written in Fourier component form and the resulting Fourier coefficients are then expressed in terms of u_s , u_{θ} , w and m_s by means of equations (8). The results of these calculations are given in matrix form by

$$Y = HZ' + JZ$$
(21)

where

l

$$H = \begin{pmatrix} b_{1} & 0 & b_{4}, & 0 \\ 0 & b_{6} & b_{8} & 0 \\ b_{10}, & b_{11} & b_{13} & b_{15} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$(22a)$$

$$\begin{pmatrix} b_{2} & b_{3} & b_{4} & b_{4}, \\ b_{10}, & b_{10}, & b_{10} \end{pmatrix}$$

$$J = \begin{vmatrix} 5 & 7 & 9 \\ b_{10} & b_{12} & b_{14} & b_{16} \\ -\omega_{s} & 0 & 0 & 0 \end{vmatrix}$$
(22b)

and the b coefficients are given in Appendix $\Pi.$

Substituting (21) into (18) yields

$$\Omega HZ' + (\Lambda + \Omega J)Z = \ell$$
(23)

Thus, the field equations (13) are to be solved subject to boundary conditions of the type (23) at the edges S = 0 and $S = \overline{S}$.

D. FINITE DIFFERENCE FORMULATION AND MATRIX SOLUTION OF THE DIFFERENCE EQUATIONS

The range of the independent variable $0 \le S \le \overline{S}$ is divided into N intervals by the grid points $i=0, 1, \ldots, N$. The ith grid size is then defined by

$$\Delta_{i} = S_{i-1} (i=1,2,...,N)$$
(24)

The vector field Z is now replaced by the mesh vectors Z_i , defined only at the grid points. At all interior points, $1 \le i \le N-1$, the first two derivatives of Z are replaced by parabolic central difference expressions of the form

$$Z'_{i} = \frac{1}{(\Delta_{i+1} + \Delta_{i})} \left[\frac{\Delta_{i}}{\Delta_{i+1}} Z_{i+1} - \left(\frac{\Delta_{i}}{\Delta_{i+1}} - \frac{\Delta_{i+1}}{\Delta_{i}} \right) Z_{i} - \frac{\Delta_{i+1}}{\Delta_{i}} Z_{i-1} \right]$$
(25a)

$$Z_{i}^{"} = \frac{2}{(\Delta_{i+1} + \Delta_{i})} \left[\frac{Z_{i+1}}{\Delta_{i+1}} - \left(\frac{1}{\Delta_{i+1}} + \frac{1}{\Delta_{i}} \right) Z_{i} + \frac{Z_{i-1}}{\Delta_{i}} \right]$$
(25b)

At the end points i=0, N first derivatives of Z are approximated by forward and backward difference formulas, respectively, which involve the same truncation orders as for the central difference formulas (25).

$$Z'_{0} = -Z_{2} \frac{\Delta_{1}}{\Delta_{2} (\Delta_{1} + \Delta_{2})} + Z_{1} \frac{\Delta_{1} + \Delta_{2}}{\Delta_{1} \Delta_{2}} - Z_{0} \left(\frac{\Delta_{2}}{\Delta_{1} (\Delta_{1} + \Delta_{2})} + \frac{2}{\Delta_{1} + \Delta_{2}} \right)$$
(26a)
$$Z'_{N} = Z_{N} \frac{\Delta_{N-1}}{\Delta_{N} (\Delta_{N} + \Delta_{N-1})} + \frac{2}{\Delta_{N} + \Delta_{N-1}} - Z_{N-1} \frac{\Delta_{N} + \Delta_{N-1}}{\Delta_{N} \Delta_{N-1}} + Z_{N-2} \frac{\Delta_{N}}{\Delta_{N-1} (\Delta_{N} + \Delta_{N-1})}$$
(26b)

This, employing Equations (25) and (26) the boundary value problems given by Equations (13) and (23) are approximated by the matrix difference equations:

$$\bar{A}_{0}Z_{1} + \bar{B}_{0}Z_{0} + \bar{C}_{0}Z_{2} = g_{0}$$
 (27a)

$$A_i Z_{i+1} + B_i Z_i + C_i Z_{i-1} = g_i (i=1, 2, ..., N-1)$$
 (27b)

$$\bar{A}_{N} Z_{N-2} + \bar{B}_{N} Z_{N} + \bar{C}_{N} Z_{N-1} = \bar{g}_{N}$$
 (27c)

where

$$\begin{split} \bar{A}_{0} &= \frac{\Delta_{1} + \Delta_{2}}{\Delta_{1} \Delta_{2}} \quad \Omega_{0} \operatorname{H}_{0} \\ \bar{B}_{0} &= \Lambda_{0} + \Omega_{0} \left[J_{0} - \frac{H_{0}}{\Delta_{1}} \left(\frac{\Delta_{2} + 2\Delta_{1}}{\Delta_{1} + \Delta_{2}} \right) \right] \end{split}$$
(28a)

$$\bar{C}_{0} &= -\frac{\Delta_{1}}{\Delta_{2} (\Delta_{1} + \Delta_{2})} \quad \Omega_{0} \operatorname{H}_{0} \\ g_{0} &= \ell_{0} \\ A_{1} &= \frac{2E_{1}}{\Delta_{1} + 1} + \frac{\Delta_{1}}{\Delta_{1} + 1} \operatorname{F}_{1} \\ B_{1} &= -2E_{1} \left(\frac{1}{\Delta_{1} + 1} + \frac{1}{\Delta_{1}} \right) \cdot \left(\frac{\Delta_{1}}{\Delta_{1 + 1}} - \frac{\Delta_{1 + 1}}{\Delta_{1}} \right) \operatorname{F}_{1} + (\Delta_{1 + 1} + \Delta_{1}) \operatorname{G}_{1} \\ C_{1} &= \frac{2E_{1}}{\Delta_{1}} - \frac{\Delta_{1 + 1}}{\Delta_{1}} \operatorname{F}_{1} \\ g_{1} &= (\Delta_{1} + \Delta_{1 + 1}) \operatorname{e}_{1}, \\ \bar{A}_{N} &= \Omega_{N} \operatorname{H}_{N} - \frac{\Delta_{N}}{\Delta_{N - 1} (\Delta_{N}^{+} \Delta_{N - 1})} \\ \bar{B}_{N} &= \Lambda_{N} + \Omega_{N} \left[J_{N} + - \frac{H_{N}}{\Delta_{N}} \left(\frac{\Delta_{N - 1}^{+} + 2\Delta_{N}}{\Delta_{N} \Delta_{N - 1}} \right) \right] \\ \bar{C}_{N} &= - \Omega_{N} \operatorname{H}_{N} - \frac{\Delta_{N} + \Delta_{N - 1}}{\Delta_{N} \Delta_{N - 1}}$$
(28c)

$$g_{N} &= \ell_{N} , \end{split}$$

and the subscripts zero and N refer to the grid values at i=0, N, respectively.

Equations (27) form a system of (N+1) linear algebraic equations in the N+1 unknown mesh vectors $(Z_i)_{i=0,1,\ldots,N}$. We assume that as $N \to \infty$ the solution of this algebraic system converges to the solution of the differential system.

Thus for a sufficiently small mesh size, the mesh vectors Z_i are expected to accurately approximate the vector field Z(s).

Matrix solutions of the difference equations are obtained by a modified Gaussian elimination scheme slightly different from the one developed in Reference [10]. The procedure is as follows:

Solve (27b) for Z_2 when i = 1,

$$Z_{2} = A_{1}^{-1} (g_{1} - B_{1} Z_{1} - C_{1} Z_{0})$$
(29)

and substitute (29) into (27a) to obtain

$$A_{o} Z_{1} + B_{o} Z_{o} = g_{o}$$

$$(27c)$$

where

$$A_{o} = \bar{A}_{o} - \bar{C}_{o} A_{1}^{-1} B_{1}, \quad B_{o} = \bar{B}_{o} - \bar{C}_{o} A_{1}^{-1} C_{1}, \quad g_{o} = \bar{g}_{o} - \bar{C}_{o} A_{1}^{-1} g_{1}$$

Next solve (27b) for Z_{N-2} when i = N-1,

$$Z_{N-2} = C_{N-1}^{-1} (g_{N-1} - A_{N-1} Z_N - B_{N-1} Z_{N-1})$$

and substitute into (27c) to obtain

$$B_{N} Z_{N} + A_{N} Z_{N-1} = g_{N}$$
(27e)

where

$$B_{N} = \bar{B}_{N} - \bar{A}_{N} C_{N-1}^{-1} A_{N-1}, \quad C_{N} = \bar{C}_{N} - \bar{A}_{N} C_{N-1}^{-1} B_{N-1},$$
$$g_{N} = \bar{g}_{N} - \bar{A}_{N-1} C_{N-1}^{-1} g_{N-1}$$

Next, Equations (27d) and (27b) (for i = 1) are solved simultaneously for

 Z_0 in terms of Z_1 and Z_2 and then for Z_1 in terms of Z_2 :

$$Z_{o} = C_{1}^{-1} \left[g_{1} - A_{1}Z_{2} - B_{1}Z_{1} \right]$$
(30)

$$Z_{1} = - \left[B_{0}C_{1}^{-1}B_{1} - A_{0} \right]^{-1} \left[B_{0}C_{1}^{-1}A_{1}Z_{2} - B_{0}C_{1}^{-1}g_{1} + g_{0} \right]$$
(31)

(This inversion procedure avoids singularities which can occur in the B_0 matrix for certain types of boundary conditions). It is next assumed that the value of the mesh vector at a given grid point can be expressed in terms of the value at the following grid point in the form

$$Z_{i-1} = -P_{i-1}Z_i + X_{i-1} (i=2,3,\ldots,N-1).$$
(32)

Recurrence relations for the P's and X's are established by substituting (32) into (27b);

$$P_{i} = \left[B_{i}-C_{i}P_{i-1}\right]^{-1}A_{i}$$

$$X_{i} = \left[B_{i}-C_{i}P_{i-1}\right]^{-1}\left[g_{i}-C_{i}X_{i-1}\right], \quad (i = 2, 3, ..., N-1).$$
(33)

However, from (31) the initial values are

$$P_{1} = \begin{bmatrix} B_{0}C_{1}^{-1}B_{1} - A_{0} \end{bmatrix}^{-1} \begin{bmatrix} B_{0}C_{1}^{-1}A_{1} \end{bmatrix}$$
(34a)

$$X_{1} = \begin{bmatrix} B_{0}C_{1}^{-1}B_{1} - A_{0} \end{bmatrix}^{-1} \begin{bmatrix} B_{0}C_{1}^{-1}g_{1} - g_{0} \end{bmatrix}, \qquad (34b)$$

and therefore all the P's: and X's up to P_{N-1} and X_{N-1} can be determined from (33) by recursions. The value of Z_N can now be determined by substituting

$$Z_{N-1} = -P_{N-1} Z_N + X_{N-1}$$
 (35)

into (27e), yielding

$$Z_{N} = \left[B_{N} - C_{N} P_{N-1} \right]^{-1} \left[g_{N} - C_{N} X_{N-1} \right]$$
(36)

and therefore all the values of Z_i down to Z_2 can be determined by recursions of (32). Finally Z_1 and Z_0 are found in turn from (31) and (30). Thus, the solution for all the Z_i j = 0, 1, ..., N involves only the inversion of 4 x 4 matrices at each grid point, which can be rapidly accomplished on a digital computer.

After the Z_i vectors have been obtained in the above manner, numerical approxinations to the remaining field quantities can be calculated from obvious finite difference counterparts of equations (8).

The stresses σ_{ϕ} , σ_{θ} and $\sigma_{\phi\theta}$ are obtained by first finding the total grid point displacements from the last two equations of (5). These are then substituted into finite difference equivalents of the strain-displacement relations: ^[9]

$$\begin{aligned} \epsilon_{\varphi} &= \frac{\mathbf{v} \cdot}{\mathbf{r}_{1}} - \frac{\mathbf{v}}{\mathbf{r}_{1}} \frac{\mathbf{r}_{1}}{\mathbf{r}_{1}} \frac{\boldsymbol{\zeta}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} - \frac{\mathbf{w} \cdot}{\mathbf{r}_{1}} \frac{\boldsymbol{\zeta}}{\mathbf{r}_{1} + \varphi} + \frac{\mathbf{w}}{\mathbf{r}_{1}} \frac{\mathbf{r}_{1}}{\mathbf{r}_{1}} \frac{\boldsymbol{\zeta}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} + \frac{\mathbf{w}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} \\ \epsilon_{\theta} &= \frac{\mathbf{u}'}{\mathbf{r}} + \frac{\mathbf{v}}{\mathbf{r}_{1}} \cot \varphi \frac{\mathbf{r}_{1} + \boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} - \frac{\mathbf{w}''}{\mathbf{r} \sin \varphi} \frac{\boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} \\ &- \frac{\mathbf{w} \cdot}{\mathbf{r}_{1}} \cot \varphi \frac{\boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} + \frac{\mathbf{w}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} , \\ \gamma_{\varphi \theta} &= \frac{\mathbf{u} \cdot}{\mathbf{r}_{2}} \frac{\mathbf{r}_{2} + \boldsymbol{\zeta}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} - \frac{\mathbf{u} \cdot}{\mathbf{r}_{2}^{2}} \frac{\mathbf{r}_{2} + \boldsymbol{\zeta}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} \cot \varphi + \frac{\mathbf{v}'}{\mathbf{r}_{1} \sin \varphi} \frac{\mathbf{r}_{1} + \boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} \end{aligned} \tag{37} \\ &+ \frac{\mathbf{w}'}{\mathbf{r}_{1}} \frac{\cot \varphi}{\sin \varphi} \left(\frac{\boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} + \frac{\mathbf{r}_{1}}{\mathbf{r}_{2}} \frac{1}{\mathbf{r}_{1} + \boldsymbol{\zeta}} \right) \\ &+ \frac{\mathbf{w}'}{\mathbf{r}_{2}} \frac{\cot \varphi}{\sin \varphi} \left(\frac{\boldsymbol{\zeta}}{\mathbf{r}_{2} + \boldsymbol{\zeta}} + \frac{\mathbf{r}_{1}}{\mathbf{r}_{2}} \frac{\boldsymbol{\zeta}}{\mathbf{r}_{1} + \boldsymbol{\zeta}} \right) . \end{aligned}$$

The stresses are finally calculated by substituting the resulting strains into Hooke's law,

$$\sigma_{\varphi} = \frac{E}{1 - \nu^{2}} (\epsilon_{\varphi} + \nu \epsilon_{\theta})$$

$$\sigma_{\theta} = \frac{E}{1 - \nu^{2}} (\epsilon_{\theta} + \nu \epsilon_{\varphi}) . \qquad (38)$$

$$\sigma_{\varphi \theta} = \sigma_{\theta \varphi} = \frac{E}{2(1+\nu)} \gamma_{\varphi \theta}$$

E. UNIT SOLUTIONS

Since the boundary conditions cannot be satisfied continuously at the flaredome intersection, a solution procedure which matches conditions point-wise will be employed. Toward this end, we wish to develop unit solutions which satisfy the homogeneous flare equations and which, when multiplied by suitable constants, can be made to satisfy appropriate boundary conditions. To develop the unit solutions, we specialize the constants of Equations (15) so that the unit problem boundary conditions, satisfied for each n, are:

- (1) $\mathbf{s} = \mathbf{o}: \mathbf{t}_{\mathbf{s}} = \mathbf{t}_{\mathbf{s}\theta} = \mathbf{f}_{\mathbf{s}} = \mathbf{m}_{\mathbf{s}} = \mathbf{o}$ $\mathbf{s} = \mathbf{\bar{s}}: \mathbf{u}_{\mathbf{s}} = \mathbf{1}, \mathbf{u}_{\theta} = \mathbf{w} = \mathbf{m}_{\mathbf{s}} = \mathbf{o}$
- (2) s = 0: same as for (1) $s = \bar{s}$: $u_s = 0$, $u_{\theta} = 1$, $w = m_s = 0$
- (3) s = o: same as for (1) $s = \bar{s}$: $u_s = u_\theta = o$, w = 1, $m_s = o$
- (4) s = o: same as for (1) $s = \bar{s}$: $u_s = u_\theta = w = o$, $m_s = 1$

In addition, for n = o, we require the particular solution corresponding to the internal pressure = p (a constant) and boundary conditions, which are:

s = o:
$$t_s^o$$
 = internal pressure membrane force
 $t_{s\theta} = f_s = m_s = o$
s = \bar{s} : $u_s = u_{\theta} = w = m_s = o$

Multiplying the resulting unit solutions by constants and summing, we obtain, for eight of the more .important derived quantities:

$$U_{F}(\mathbf{S},\boldsymbol{\theta}) = \sum_{\substack{n=0,2,\ldots}}^{n} \cos n \, \boldsymbol{\theta} \sum_{k=1}^{4} C_{k}^{n} u_{s1k}^{n}(\mathbf{s}) + u^{0} \quad (\mathbf{s})$$
(39a)

$$V_{F}(S,\theta) = \sum_{n=0,2,\ldots}^{n} \sin n \theta \sum_{k=1}^{4} C_{k}^{n} u_{\theta k}^{n} (s)$$
(39b)

$$W_{F}(s,\theta) \stackrel{n}{=} \sum_{n=0,2,\ldots}^{n} \cos n \theta \stackrel{4}{\searrow} C_{k}^{n} w_{k}^{n} (s) + w^{0} (s)$$
(39c)

$$M_{S}(S,\theta) = \sum_{n=0,2,..}^{n} \cos n \theta \sum_{k=1}^{4} C_{k}^{n} m_{k}^{n} (s) + m^{0}(s)$$
(39d)

$$N_{S}(S,\theta) = \sum_{n=0,2,..}^{n} \cos n \theta \sum_{k=1}^{4} C_{k}^{n} t_{s_{k}}^{n} (s) + t_{s}^{0} (s)$$
(39e)

$$N_{S\theta}(S,\theta) = \sum_{\substack{n=0,2,\ldots\\ n=0,2,\ldots}}^{n} \sin n \theta \sum_{k=1}^{4} C_k^n t_s \theta_k^n (s)$$
(39f)

$$\bar{Q}_{S}(S,\theta) = \sum_{n=0,2,\ldots}^{n} \cos n \theta \sum_{k=1}^{4} C_{k}^{n} f_{s_{k}}^{n}(s) + f_{s}^{0}(s)$$
(39g)

$$\Phi_{S}(s,\theta) = \sum_{n=0,2,\ldots}^{n} \cos n \theta \sum_{k=1}^{\infty} C_{k}^{n} \bar{\varphi}_{k}^{n}(s) + \bar{\varphi}^{0}(s)$$
(39h)

where the subscript F refers to "Flare," the subscript S relates to the meridional coordinate and U_F and V_F are the meridional and circumferential deflections, respectively.

The remaining derived quantities may be formed in a similar manner where necessary.

Only the even integer (n) Fourier terms have been used, since the nozzle-dome geometry is assumed to be symmetric about the xz and yz planes. Writing the solutions in this form yields 4 $(\frac{n}{2} + 1)$ constants C_k^n to satisfy the nozzle-dome intersection compatibility and equilibrium conditions. However, because of the problem's symmetry it can be shown that $C_2^0 = 0$, thus reducing the number of unknowns to $2\bar{n} + 3$.

SECTION III

DOME ANALYSIS

A. INTRODUCTION

The governing equations for the bending and stretching of an arbitrarily shaped, thin, shallow shell were originally developed by Marguere [12]. For completeness, these equations are rederived (Appendix II) for the particular geometry of an elliptic-paraboloidal shell. The median surface of this shell is prescribed by (see Figure 5)

$$z = -\frac{1}{2} \left(\frac{x^2}{R_x} + \frac{y^2}{R_y} \right)$$
(1)

where, to the order of approximation in the analysis, R_x and R_y are the principal radii of curvature.

Marguerre's shallow shell theory is characterized by a linear system of eleven coupled equations for as many unknowns. In particular, this set consists of the equilibrium equations

$$\frac{\partial \mathbf{N}_{\mathbf{X}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{N}_{\mathbf{X}\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{0}$$
(2a)

$$\frac{\partial \mathbf{N}_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{N}_{\mathbf{Y}}}{\partial \mathbf{y}} = \mathbf{0}$$
(2b)

$$\frac{\partial \mathbf{M}_{\mathbf{X}}}{\partial \mathbf{X}} + \frac{\partial \mathbf{M}_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{y}} = \mathbf{Q}_{\mathbf{X}}$$
(2c)

$$\frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{M}_{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{Q}_{\mathbf{y}}$$
(2d)

$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} - \frac{N_x}{R_x} - \frac{N_y}{R_y} = -p(x,y)$$
(2e)

Figure 5. Coordinates and Notation for Shallow Elliptic-Paraboloidal Shell

and the stress resultant-displacement relations

$$N_{x} = A \left[\frac{\partial u}{\partial x} + \nu \frac{\partial v}{\partial y} + \left(\frac{1}{R_{x}} + \frac{\nu}{R_{y}} \right) w \right]$$
(3a)

$$N_{y} = A \left[\frac{\partial v}{\partial y} + \nu \frac{\partial u}{\partial x} + \left(\frac{1}{R_{y}} + \frac{\nu}{R_{x}} \right) w \right]$$
(3b)

$$N_{xy} = \frac{(1-\nu)A}{2} \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right]$$
(3c)

$$\mathbf{M}_{\mathbf{X}} = -\mathbf{D} \left[\frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2} + \nu \frac{\partial^2 \mathbf{w}}{\partial \mathbf{y}^2} \right]$$
(3d)

$$\mathbf{M}_{\mathbf{y}} = -\mathbf{D} \left[\frac{\partial^2 \mathbf{w}}{\partial \mathbf{y}^2} + \nu \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2} \right]$$
(3e)

$$\mathbf{M}_{\mathbf{X}\mathbf{y}} = -(1-\nu)\mathbf{D} \quad \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x} \partial \mathbf{y}}$$
(3f)

The notation and sign convention is shown in Figure 6. Associated with Equations 2 and 3 are the admissible boundary conditions which specify either

u or
$$\left[N_{x}\cos{(\ell,x)} + N_{xy}\cos{(\ell,y)}\right]$$
 (4a)

v or
$$\left[N_{xy}\cos{(\ell,x)} + N_{y}\cos{(\ell,x)}\right]$$
 (4b)

w or
$$\left[\left(\mathbf{Q}_{\mathbf{x}} + \frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{y}}\right)\cos\left(\mathbf{\ell},\mathbf{x}\right) + \left(\mathbf{Q}_{\mathbf{y}} + \frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x}}\right)\cos\left(\mathbf{\ell},\mathbf{y}\right)\right]$$
 (4c)

$$\frac{\partial \mathbf{w}}{\partial \mathbf{x}}$$
 or $\mathbf{M}_{\mathbf{x}}$ (4d)

$$\frac{\partial \mathbf{w}}{\partial \mathbf{y}}$$
 or $\mathbf{M}_{\mathbf{y}}$ (4e)

Equations 2 and 3 can be contracted to the single fourth order partial differential equation (Appendix III)

- M x y Mx Mx - M xy Qy My - M xy

Figure 6. Sign Convention for the Stress Resultants
$$\boldsymbol{\nabla}^{4} \boldsymbol{\varphi} - \mathbf{i} \delta^{2} \boldsymbol{\nabla}_{k}^{2} \boldsymbol{\varphi} = \frac{\mathbf{p} (\mathbf{x}, \mathbf{y})}{\mathbf{D}}$$
(5a)

where φ , the complex deflection-stress function, is defined by

$$\varphi = \mathbf{w} + \frac{\mathbf{i} \mathbf{F}}{\left[(1-\nu^2) \mathbf{AD}\right]^{1/2}}$$
(5b)

with

ľ

$$i = \sqrt{-1}$$

$$\delta^{4} = \frac{(1-\nu^{2})A}{D}$$

$$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}$$

$$\nabla^{2}_{k} = \frac{1}{R_{x}} - \frac{\partial^{2}}{\partial y^{2}} + \frac{1}{R_{y}} - \frac{\partial^{2}}{\partial x^{2}}$$
(5c)

and F is related to the stress resultants by

$$N_{\mathbf{x}} = \frac{\partial^{2} \mathbf{F}}{\partial \mathbf{y}^{2}}$$

$$N_{\mathbf{xy}} = -\frac{\partial^{2} \mathbf{F}}{\partial \mathbf{x} \partial \mathbf{y}}$$

$$N_{\mathbf{y}} = \frac{\partial^{2} \mathbf{F}}{\partial \mathbf{x}^{2}}$$
(5d)

Thus, Marguerre's shallow shell theory reduces to the solution of Equation 5a subject to the requisite boundary conditions selected from Equations 4.

B. BOUNDARY CONDITIONS

The controlling equation for the deformation of the elliptic-paraboloidal shell (Equation 5a) requires the stipulation of four boundary conditions at each

edge to establish a unique solution. Four of these will be specified some distance away from the junction of the flare and dome.

In accordance with the local character of the discontinuity stress, the bending effects attenuate rapidly, and the stress field approaches the membrane field. Thus, away from the intersection, the following conditions are imposed,

at x = L_x (Figure 7)

$$N_x = \text{membrane force}$$

 $N_{xy} = 0$
 $Q_x + \frac{\partial M_{xy}}{\partial y} = 0$ (6a)
 $M_x = 0$

at $y = L_y$ $N_y = \text{membrane force}$ $N_{xy} = 0$ $Q_y + \frac{\partial M_{xy}}{\partial x} = 0$ (6b) $M_y = 0$

The symmetry of the shell leads to the additional restrictions along x = 0

$$u = 0$$

$$N_{xy} = 0$$

$$\frac{\partial w}{\partial x} = 0$$

$$Q_{x} + \frac{\partial M_{xy}}{\partial y} = 0$$
(7a)

Į

F

ŀ

ľ

I

Figure 7. Intersection of the Flared Nozzle with the Elliptic-Paraboloidal Shell

and at y = 0

$$v = 0$$

$$N_{xy} = 0$$

$$\frac{\partial W}{\partial y} = 0$$

$$Q_{y} = \frac{\partial M_{xy}}{\partial x} = 0$$
(7b)

Furthermore, the continuity conditions at the junction of the flare and the dome require that the displacements, normal slope, and stress resultants of each shell be equal. These compatibility relations will be described in detail in the section dealing with the "point-matching" of the flare to the dome. However, for subsequent use, the Cartesian components of the displacements and forces in the elliptic-paraboloidal shell are transformed to curvilinear components. To this end, the displacements are (Figure 8a)

$$u_{\mathbf{r}} = u \cos \theta + v \sin \theta$$

$$v_{\theta} = -u \sin \theta + v \cos \theta$$
(8a)

and the in-plane force resultants are (Figure 8b)

$$N_{r} = N_{x} \cos^{2}\theta + N_{y} \sin^{2}\theta + 2 N_{xy} \sin \theta \cos \theta$$

$$N_{r\theta} = \left(N_{y} - N_{x}\right) \sin \theta \cos \theta + N_{xy} \left(\cos^{2}\theta - \sin^{2}\theta\right)$$
(8b)
$$N_{\theta} = N_{x} \sin^{2}\theta + N_{y} \cos^{2}\theta - 2 N_{xy} \sin \theta \cos \theta$$

and the moment resultants are (Figure 8c)

$$M_{\mathbf{r}} = M_{\mathbf{x}} \cos^2 \theta + M_{\mathbf{y}} \sin^2 \theta + 2 M_{\mathbf{xy}} \sin \theta \cos \theta$$
$$M_{\mathbf{r}\theta} = \left(M_{\mathbf{y}} - M_{\mathbf{x}}\right) \sin \theta \cos \theta + M_{\mathbf{xy}} \left(\cos^2 \theta - \sin^2 \theta\right)$$
(8c)
$$M_{\theta} = M_{\mathbf{x}} \sin^2 \theta + M_{\mathbf{y}} \cos^2 \theta - 2 M_{\mathbf{xy}} \sin \theta \cos \theta$$

a. displacements

ľ

b. force resultants

c. moment resultants

- d. transverse shear resultants
- Figure 8. Cartesian and Polar Coordinate Representations of the Displacements and Stress Resultants

and the transverse shear resultants are (Figure 8d)

$$Q_{\mathbf{r}} = Q_{\mathbf{x}} \cos \theta + Q_{\mathbf{y}} \sin \theta$$

$$Q_{\theta} = -Q_{\mathbf{x}} \sin \theta + Q_{\mathbf{y}} \cos \theta$$
(8d)

C. SOLUTION OF THE PROBLEM: ELLIPTIC-PARABOLOIDAL SHELL

1. <u>Technical Approach</u>

The mathematical difficulties associated with the simultaneous satisfaction of the field equation (Equation 5a) and the associated boundary conditions (Equations 6, 7, and the interaction conditions) are sizable. Consequently, an approximate solution technique known as "Least-Squares Point-Matching", will be employed, to effect a solution to the composite (interaction) problem.

To prepare the way for the application of the point-matching procedure, two families of functions which satisfy the homogeneous field Equation, 5a, are constructed. Each family is in the form of an infinite series with coefficients which must be determined from the boundary conditions. The solution (applicable to the elliptic-paraboloidal shell) is composed of three distinct parts. These are (1) a particular solution of Equation 5a (suitable for the description of the membrane field), (2) a solution to the homogeneous equation which decays exponentially in the y direction and has a trigonometric variation in the x direction, and (3) a companion solution to the homogeneous equation which decays exponentially in the x direction and has a trigonometric variation in the y direction.

The required solutions will be developed in subsection 2, and the boundary conditions satisfied by <u>each</u> of the solutions will be discussed in subsection 3.

2. Component Solutions

a. Particular Solution

A particular solution of Equation 5a, which satisfies the far field boundary conditions (Equation 6) as well as the symmetry requirements

36

(Equations 7), can be constructed from the membrane theory of shells. After neglecting the quantities multiplied by the flexural rigidity, D, Equation 5a reduces to

$$\boldsymbol{\nabla}_{\mathbf{k}}^{2} \mathbf{F} = \mathbf{p} \tag{9}$$

A suitable choice of F(x, y) is

$$F(x,y) = p \frac{R_y}{4} \left[y^2 + \left(2 - \frac{R_y}{R_x} \right) x^2 \right]$$
(10)

and from 5d, the stress resultants are

$$N_{x} = p \frac{R_{y}}{2}$$

$$N_{xy} = 0$$

$$N_{y} = p \frac{R_{y}}{2} \left(2 - \frac{R_{y}}{R_{x}}\right)$$
(11a)

Substituting Equation 11a into 3a, 3b, and 3c, arbitrarily setting the normal deflection, w, equal to zero, and then integrating, leads to the membrane displacements

$$u = p \frac{R_y}{2Et} \left[1 - 2\nu + \nu \frac{R_y}{R_x} \right] x$$

$$v = p \frac{R_y}{2Et} \left[2 - \nu - \frac{R_y}{R_x} \right] y$$
(11b)
$$w = 0$$

b. Complementary Solution

A complementary solution to Equation 5a, which gives rise to stress resultants that decay exponentially as y increases, can be presented in the form

$$\varphi_n = C \overline{e}^{\beta y} \cos \alpha_n x$$
 (12a)

where α_n is taken as

$$\alpha_n = \frac{n\pi}{2L_x}$$
; n = integer (12b)

and β is a characteristic number to be determined and C is an arbitrary constant. The constant L_x is the projected semi-span in the x direction (Figure 7).

Substituting from Equation 12a into 5a leads to the characteristic equation

$$\left(\beta^{2}-\alpha_{n}^{2}\right)^{2}-\frac{\mathrm{i}\,\delta^{2}}{\mathrm{R}_{x}}\left(\beta^{2}-\alpha_{n}^{2}\right)-\mathrm{i}\,\delta^{2}\left(\frac{1}{\mathrm{R}_{x}}-\frac{1}{\mathrm{R}_{y}}\right)\alpha_{n}^{2}=0 \quad (13)$$

for the acceptable values of β . They are,

$$\beta_{1,2} = \pm \left(\mathbf{p}_{1} + \mathbf{i} \, \mathbf{q}_{1} \right)$$

$$\beta_{3,4} = \pm \left(\mathbf{p}_{2} + \mathbf{i} \, \mathbf{q}_{2} \right)$$
(14)

with the definitions

$$p_{1}^{2} = \frac{1}{2} \left(\alpha_{n}^{2} - \frac{\delta^{2} b}{2R_{x}} \right) \left(1 \pm \sqrt{1 + \frac{(1+a) \delta^{2}}{2R_{x} \alpha_{n}^{2} - \delta^{2} b}} \right)^{2}$$
(15a)

$$p_{2}^{2} = \frac{1}{2} \left(\alpha_{n}^{2} + \frac{\delta^{2} b}{2R_{x}} \right) \left(1 \pm \sqrt{1 + \frac{(1-a) \delta^{2}}{2R_{x} \alpha_{n}^{2} + \delta^{2} b}} \right)^{2}$$
(15b)

$$q_{1}^{2} = \frac{1}{2} \left(\alpha_{n}^{2} - \frac{\delta^{2} b}{2R_{x}} \right) \left(-1 \pm \sqrt{1 + \frac{(1+a)}{2R_{x}} \alpha_{n}^{2} - \delta^{2} b} \right)^{2}$$
(15c)

$$q_{2}^{2} = \frac{1}{2} \left(\alpha_{n}^{2} + \frac{\delta^{2} b}{2R_{x}} \right) \left(-1 \pm \sqrt{1 + \frac{(1-a) \delta^{2}}{2R_{x} \alpha_{n}^{2} + \delta^{2} b}} \right)^{2}$$
(15d)

$$a^{2} = \frac{1}{2} \left(1 + \sqrt{1 + \frac{16R_{x}^{4}\alpha_{n}^{4}}{\delta^{4}}} \left(\frac{1}{R_{x}} - \frac{1}{R_{y}} \right)^{2}} \right)$$
 (15e)

$$b = -\frac{2R_x^2 \alpha_n^2}{a\delta^2} \left(\frac{1}{R_x} - \frac{1}{R_y}\right)$$
(15f)

Since p_1 , p_2 , q_1 , and q_2 are real numbers, the choice of signs preceding the radical is dependent upon the signs of the terms $\left(\alpha_n^2 - \frac{\delta^2 b}{2R_x}\right)$ and $\left(\alpha_n^2 + \frac{\delta^2 b}{2R_x}\right)$. For example, in computing p_1 , if

$$\alpha_{\rm n}^2 - \frac{\delta^2 b}{2R_{\rm x}} > 0 \tag{16a}$$

the positive sign is required, and if

$$\alpha_{n}^{2} - \frac{\delta^{2}b}{2R_{x}} < 0 \qquad (16b)$$

the negative sign is required. Furthermore, if

$$\alpha_n^2 - \frac{\delta^2 b}{2R_x} = 0 \tag{16c}$$

equation 15a reduces to

$$p_1^2 = \frac{(1+a)\delta^2}{4R_x}$$
 (16d)

The remaining quantities, q_1 , p_2 , and q_2 are obtained in the same manner.

Employing Equation 14, the expanded form of Equation 12a

becomes,

$$\varphi_{n} = \cos \alpha_{n} \times \left[C_{1} e^{(p_{1}+iq_{1})y} + C_{2} e^{-(p_{1}+iq_{1})y} + C_{3} e^{(p_{2}+iq_{2})y} + C_{4} e^{-(p_{2}+iq_{2})y} \right] (17)$$

where C_1 , C_2 , C_3 , and C_4 are complex constants. Since Equation 17 is valid for any n, the complete solution will be composed of the sum over all values on n. With this understanding, further discussions will be concerned only with a generic term of the series. Retaining the terms which give rise to negative exponents in 17, since the stress resultants must decay as y grows large, and letting

$$C_2 = A_1 + i B_1$$
$$C_4 = A_2 + i B_2$$

Equations 17 becomes

$$\varphi_{n} = \cos \alpha_{n} x \left[\left\{ A_{1} \cos q_{1} y + B_{1} \sin q_{1} y \right\} e^{-p_{1} y} + \left\{ A_{2} \cos q_{2} y + B_{2} \sin q_{2} y \right\} e^{-p_{2} y} + i \left\{ B_{1} \cos q_{1} y - A_{1} \sin q_{1} y \right\} e^{-p_{1} y} + i \left\{ B_{2} \cos q_{2} y - A_{2} \sin q_{2} y \right\} e^{-p_{2} y} \right]$$
(18)

Equating real and imaginary parts, as prescribed by Equation 5b, leads to the deflection

$$w_{n} = \cos \alpha_{n} x \left[\left\{ A_{1} \cos q_{1} y + B_{1} \sin q_{1} y \right\} e^{-p_{1} y} + \left\{ A_{2} \cos q_{2} y + B_{2} \sin q_{2} y \right\} e^{-p_{2} y} \right]$$
(19a)

and the stress function

$$\frac{F_{n}}{[(1-\nu^{2})AD]^{1/2}} = \cos \alpha_{n} x \left[\left\{ -A_{1} \sin q_{1} y + B_{1} \cos q_{1} y \right\} e^{-p_{1} y} + \left\{ -A_{2} \sin q_{2} y + B_{2} \cos q_{2} y \right\} e^{-p_{2} y} \right]$$
(19b)

The stress resultants associated with Equations 19 are obtained from the interconnecting relations (Equations 3d, 3e, 3f, and 5d) and are

$$N_{\mathbf{x}} = [(1-\nu^{2})AD]^{1/2} \cos \alpha_{\mathbf{n}} x \left[e^{-\mathbf{p}_{1}\mathbf{y}} \left\{ \left[\left(q_{1}^{2} - \mathbf{p}_{1}^{2} \right) A_{1} + 2 q_{1}\mathbf{p}_{1}B_{1} \right] \sin q_{1}\mathbf{y} \right. \\ + \left[2 q_{1}\mathbf{p}_{1}A_{1} - \left(q_{1}^{2} - \mathbf{p}_{1}^{2} \right) B_{1} \right] \cos q_{1}\mathbf{y} \right\} \\ + e^{-\mathbf{p}_{2}\mathbf{y}} \left\{ \left[\left(q_{2}^{2} - \mathbf{p}_{2}^{2} \right) A_{2} + 2 q_{2}\mathbf{p}_{2}B_{2} \right] \sin q_{2}\mathbf{y} \right. \\ + \left[2 q_{2}\mathbf{p}_{2}A_{2} - \left(q_{2}^{2} - \mathbf{p}_{2}^{2} \right) B_{2} \right] \cos q_{2}\mathbf{y} \right\}$$
(20a)

$$N_{xy} = \alpha_{n} \left[(1-\nu^{2})AD \right]^{1/2} \sin \alpha_{n} x \left[e^{-p_{1}y} \left\{ \left(p_{1}A_{1} - q_{1}B_{1} \right) \sin q_{1}y - \left(q_{1}A_{1} + p_{1}B_{1} \right) \cos q_{1}y \right\} + e^{-p_{2}y} \left\{ \left(p_{2}A_{2} - q_{2}B_{2} \right) \sin q_{2}y - \left(q_{2}A_{2} + p_{2}B_{2} \right) \cos q_{2}y \right\} \right]$$
(20b)

$$N_{y} = -\alpha_{n}^{2} [(1-\nu^{2})AD]^{1/2} \cos \alpha_{n} x \left[e^{-p_{1}y} \left\{ -A_{1} \sin q_{1}y + B_{1} \cos q_{1}y \right\} + e^{-p_{2}y} \left\{ -A_{2} \sin q_{2}y + B_{2} \cos q_{2}y \right\} \right]$$
(20c)

$$M_{x} = D \cos \alpha_{n} x \left[e^{-p_{1}y} \left\{ \left[\left(\alpha_{n}^{2} - \nu \left[p_{1}^{2} - q_{1}^{2} \right] \right) A_{1} + 2 \nu p_{1} q_{1} B_{1} \right] \cos q_{1} y + \right. \\ \left. + \left[-2\nu p_{1} q_{1} A_{1} + \left(\alpha_{n}^{2} - \nu \left[p_{1}^{2} - q_{1}^{2} \right] \right) B_{1} \right] \sin q_{1} y \right\} \\ \left. + e^{-p_{2}y} \left\{ \left[\left(\alpha_{n}^{2} - \nu \left[p_{2}^{2} - q_{2}^{2} \right] \right) A_{2} + 2\nu p_{2} q_{2} B_{2} \right] \cos q_{2} y \right. \\ \left. + \left[-2\nu p_{2} q_{2} A_{2} + \left(\alpha_{n}^{2} - \nu \left[p_{2}^{2} - q_{2}^{2} \right] \right) B_{2} \right] \sin q_{2} y \right\} \right] (20d)$$

$$M_{y} = -D\cos\alpha_{n}x \left[e^{-p_{1}y} \left\{ \left[\left(p_{1}^{2} - q_{1}^{2} - \nu \alpha_{n}^{2} \right) A_{1} - 2p_{1}q_{1}B_{1} \right] \cos q_{1}y + \left[2p_{1}q_{1}A_{1} + \left(p_{1}^{2} - q_{1}^{2} - \nu \alpha_{n}^{2} \right) B_{1} \right] \sin q_{1}y \right\} + e^{-p_{2}y} \left\{ \left[\left(p_{2}^{2} - q_{2}^{2} - \nu \alpha_{n}^{2} \right) A_{2} - 2p_{2}q_{2}B_{2} \right] \cos q_{2}y + \left[2p_{2}q_{2}A_{2} + \left(p_{2}^{2} - q_{2}^{2} - \nu \alpha_{n}^{2} \right) B_{2} \right] \sin q_{2}y \right\} \right] (20e)$$

$$M_{xy} = (1-\nu) D\alpha_{n} \sin \alpha_{n} x \left[e^{-p_{1}y} \left\{ \left(-p_{1}A_{1} + q_{1}B_{1} \right) \cos q_{1}y - \left(q_{1}A_{1} + p_{1}B_{1} \right) \sin q_{1}y \right\} + e^{-p_{2}y} \left\{ \left(-p_{2}A_{2} + q_{2}B_{2} \right) \cos q_{2}y - \left(q_{2}A_{2} + p_{2}B_{2} \right) \sin q_{2}y \right\} \right]$$
(20f)

The transverse shear resultants are, from Equations 2c and 2d,

$$\begin{aligned} \mathbf{Q}_{\mathbf{x}} &= \alpha_{\mathbf{n}} \, \mathbf{D} \sin \alpha_{\mathbf{n}} \mathbf{x} \left[e^{-\mathbf{p}_{1} \mathbf{y}} \left\{ \left(\left[\mathbf{p}_{1}^{2} - \mathbf{q}_{1}^{2} - \alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{1} - 2 \, \mathbf{p}_{1} \mathbf{q}_{1} \mathbf{B}_{1} \right) \cos \mathbf{q}_{1} \mathbf{y} \right. \\ &+ \left(2 \, \mathbf{p}_{1} \mathbf{q}_{1} \mathbf{A}_{1} + \left[\mathbf{p}_{1}^{2} - \mathbf{q}_{1}^{2} - \alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{1} \right) \sin \mathbf{q}_{1} \mathbf{y} \right\} + \\ &e^{-\mathbf{p}_{2} \mathbf{y}} \left\{ \left(\left[\mathbf{p}_{2}^{2} - \mathbf{q}_{2}^{2} - \alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{2} - 2 \, \mathbf{p}_{2} \mathbf{q}_{2} \mathbf{B}_{2} \right) \cos \mathbf{q}_{2} \mathbf{y} \right. \\ &+ \left(2 \, \mathbf{p}_{2} \mathbf{q}_{2} \mathbf{A}_{2} + \left[\mathbf{p}_{2}^{2} - \mathbf{q}_{2}^{2} - \alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{2} \right) \sin \mathbf{q}_{2} \mathbf{y} \right\} \right] \quad (21a) \end{aligned}$$

$$\begin{aligned} \mathbf{Q}_{\mathbf{y}} &= \mathbf{D} \cos \alpha_{\mathbf{n}} \mathbf{x} \left[\mathbf{e}^{-\mathbf{p}_{1}\mathbf{y}} \left\{ \left(\left[\mathbf{p}_{1}^{3} - 3\mathbf{p}_{1}\mathbf{q}_{1}^{2} - \mathbf{p}_{1}\alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{1} + \left[\mathbf{q}_{1}^{3} - 3\mathbf{p}_{1}^{2}\mathbf{q}_{1} + \mathbf{q}_{1}\alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{1} \right) \cos \mathbf{q}_{1}\mathbf{y} \right. \\ &+ \left(- \left[\mathbf{q}_{1}^{3} - 3\mathbf{p}_{1}^{2}\mathbf{q}_{1} + \mathbf{q}_{1}\alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{1} + \left[\mathbf{p}_{1}^{3} - 3\mathbf{p}_{1}\mathbf{q}_{1}^{2} - \mathbf{p}_{1}\alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{1} \right) \sin \mathbf{q}_{1}\mathbf{y} \right\} \\ &+ \mathbf{e}^{-\mathbf{p}_{2}\mathbf{y}} \left\{ \left(\left[\mathbf{p}_{2}^{3} - 3\mathbf{p}_{2}\mathbf{q}_{2}^{2} - \mathbf{p}_{2}\alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{2} + \left[\mathbf{q}_{2}^{3} - 3\mathbf{p}_{2}^{2}\mathbf{q}_{2} + \mathbf{q}_{2}\alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{2} \right) \cos \mathbf{q}_{2}\mathbf{y} \right. \\ &+ \left(- \left[\mathbf{q}_{2}^{3} - 3\mathbf{p}_{2}^{2}\mathbf{q}_{2} + \mathbf{q}_{2}\alpha_{\mathbf{n}}^{2} \right] \mathbf{A}_{2} + \left[\mathbf{p}_{2}^{3} - 3\mathbf{p}_{2}\mathbf{q}_{2}^{2} - \mathbf{p}_{2}\alpha_{\mathbf{n}}^{2} \right] \mathbf{B}_{2} \right) \sin \mathbf{q}_{2}\mathbf{y} \right\} \right] (21b) \end{aligned}$$

The displacements u and v are evaluated from Equations 3a, 3b, and 3c where N_x , N_{xy} , N_y , and w are now known functions. Solving the first order partial differential equations results in

Ì

$$\begin{aligned} \mathbf{u} &= \left[\frac{\mathbf{D}}{(1-\nu^{2})\mathbf{A}}\right]^{1/2} \frac{\sin\alpha_{n}^{\mathbf{x}}}{\alpha_{n}} \left[e^{-\mathbf{p}_{1}\mathbf{y}} \left\{ \left[\left(q_{1}^{2}-\mathbf{p}_{1}^{2}-\alpha_{n}^{2}\nu\right)\mathbf{A}_{1}+\left(2\mathbf{p}_{1}q_{1}-\left\{\frac{(1-\nu^{2})\mathbf{A}}{\mathbf{D}\,\mathbf{R}_{x}^{2}}\right\}^{1/2}\mathbf{B}_{1}\right] \sin q_{1}\mathbf{y} \right. \\ &+ \left[\left(2q_{1}\mathbf{p}_{1}-\left\{\frac{(1-\nu^{2})\mathbf{A}}{\mathbf{D}\,\mathbf{R}_{x}^{2}}\right\}^{1/2}\right)\mathbf{A}_{1}-\left(q_{1}^{2}-\mathbf{p}_{1}^{2}-\alpha_{n}^{2}\nu\right)\mathbf{B}_{1}\right] \cos q_{1}\mathbf{y} \right\} + \\ &\quad e^{-\mathbf{p}_{2}\mathbf{y}} \left\{ \left[\left(q_{2}^{2}-\mathbf{p}_{2}^{2}-\alpha_{n}^{2}\nu\right)\mathbf{A}_{2}+\left(2\mathbf{p}_{2}q_{2}-\left\{\frac{(1-\nu^{2})\mathbf{A}}{\mathbf{D}\,\mathbf{R}_{x}^{2}}\right\}^{1/2}\right)\mathbf{B}_{2}\right] \sin q_{2}\mathbf{y} \right. \\ &+ \left[\left(2\mathbf{p}_{2}q_{2}-\left\{\frac{(1-\nu^{2})\mathbf{A}}{\mathbf{D}\,\mathbf{R}_{x}^{2}}\right\}^{1/2}\right)\mathbf{A}_{2}-\left(q_{2}^{2}-\mathbf{p}_{2}^{2}-\alpha_{n}^{2}\nu\right)\mathbf{B}_{2}\right] \cos q_{2}\mathbf{y} \right\} \right] (22a) \end{aligned}$$

$$v = \left[\left[\frac{D}{(1-v^2)A} \right]^{1/2} \frac{\cos \alpha_n x}{\alpha_n^2} \left[e^{-p_1 y} \left\{ \left[\left(p_1^3 - 3p_1 q_1 x_n^2 p_1 y_1 + q_1 \left\{ \frac{(1-v^2)A}{B_1} \right\}^{1/2} + 2(1+v) \alpha_n^2 q_1 \right) p_1 \right] \sin q_1 y \right. \right. \\ \left. + \left[\left(q_1^3 - 3q_1 p_1^2 - q_1 \alpha_n^2 v_1 + p_1 \left\{ \frac{(1-v^2)A}{D_R x^2} \right\}^{1/2} + 2(1+v) \alpha_n^2 q_1 \right) B_1 \right] \sin q_1 y \right] \right]$$

Thus, all the field quantities derivable from the assumed solution (Equation 12a) are now known for integral values of n. The special case of n = 0 must be examined independently. This case corresponds to a one dimensional problem in the coordinate y. Therefore, Equation (5a) reduces to (with p = 0)

$$\frac{d^4\varphi_0}{dy^4} - i\frac{\delta^2}{R_x}\frac{d^2\varphi_0}{dy^2} = 0$$
(23a)

and φ_{0} is

$$\varphi_{0} = C_{0}' + C_{1}'y + C_{2}'e^{-\beta_{0}(1+i)y} + C_{3}'^{\beta_{0}(1+i)y}$$
 (23b)

where

$$\boldsymbol{\beta}_{\mathbf{0}} = \left(\frac{\boldsymbol{\delta}^2}{2\mathbf{R}_{\mathbf{X}}}\right)^{1/2} \tag{23c}$$

and C_0' , C_1' , C_2' and C_3' are complex constants.

Again, since the field quantities are to decay exponentially, only the negative exponential is retained. Furthermore, the rigid body constant C_0' is also omitted. Therefore, analogous to the case $n \ge 0$, the displacements and stress resultants for n = 0 are (with $C_2' = A_0 + i B_0$)

$$w_{o} = (A_{o} \cos \beta_{o} y + B_{o} \sin \beta_{o} y) e^{-\beta_{o} y}$$
(24a)

$$\frac{F_{o}}{\left[(1-\nu^{2})AD\right]^{1/2}} = (-A_{o}\sin\beta_{o}y + B_{o}\cos\beta_{o}y)e^{-\beta_{o}y}$$
(24b)

$$N_{x} = [(1-\nu^{2})AD]^{1/2} 2\beta_{0}^{2} e^{-\beta_{0}y} (A_{0}\cos\beta_{0}y + B_{0}\sin\beta_{0}y) \qquad (24c)$$

$$N_{XY} = 0 \tag{24d}$$

$$N_{y} = 0 \tag{24e}$$

$$M_{x} = -2\nu D \beta_{o}^{2} e^{-\beta_{o}y} (A_{o} \sin \beta_{o}y - B_{o} \cos \beta_{o}y)$$
(24f)

$$M_{xy} = 0 \tag{24g}$$

$$M_{y} = -2D\beta_{o}^{2}e^{-r_{o}y} (A_{o}\sin\beta_{o}y - B_{o}\cos\beta_{o}y)$$
(24h)

$$Q_{\rm X} = 0 \tag{24i}$$

$$Q_{y} = -2D\beta_{o}^{\beta} e^{-\beta_{o}y} \left(-\left[A_{o}^{-B_{o}}\right] \sin\beta_{o}y + \left[A_{o}^{+B_{o}}\right] \cos\beta_{o}y \right) (24j)$$

$$u_{0} = 0$$
(24k)
$$-\beta v$$

$$v_{o} = \frac{e^{\beta_{o}y}}{2\beta_{o}} \left\{ (\sin\beta_{o}y - \cos\beta_{o}y)A_{o} - (\cos\beta_{o}y + \sin\beta_{o}y)B_{o} + constant \right\}$$
(24*l*)

All quantities related to the product type solution (Equation 12a) displaying exponentially decaying stress fields in the y direction have now been evaluated. The companion solution, i.e., the solution which gives rise to an exponentially decaying stress field in the x direction, can be developed in a similar manner. Here the stress function is taken as

$$\Phi = \sum_{n} e^{\beta x} \cos \overline{\alpha}_{m} y \qquad (25a)$$

where

$$\alpha_{\rm m} = \frac{{\rm m}\pi}{2{\rm L}_{\rm y}}$$
(25b)

Proceeding as before, Equations 12a to 24 would yield the similar relations (Equations 13, 15, and 17 through 24), with the following changes:

ŀ

ŀ

ŀ

ŀ

I

R_x by $\mathbf{R}_{\mathbf{y}}$ R_y R_x $\mathbf{L}_{\mathbf{X}}$ $\mathbf{r}^{\mathbf{r}}$ $\mathbf{r}^{\mathbf{r}}$ $\mathbf{L}_{\mathbf{X}}$ у x х у ^vm ^un ^um v_n w_m $\mathbf{w}_{\mathbf{n}}$ м_у $\mathbf{M}_{\mathbf{x}}$ м_y $\mathbf{M}_{\mathbf{X}}$ M_{xy} м_{ху} Ny $N_{\mathbf{x}}$ N_x Ny N_{xy} N_{xy} p₃ \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_4 q_1 q_3 \mathbf{q}_4 \mathbf{q}_2 $\overline{\alpha}_{\mathrm{m}}$ α_n A_3 A₁ A₄ A_2 в3 в₁ ^B4 B_2

(26)

The equations resulting from this cyclic interchange (Equation 26) will not be listed since they are employed symbolically in subsequent analysis. That is, the first solution (Equations 12a to 24) is tabulated and the companion solution can always be obtained by the cyclic interchange listed in Equation 26.

3. Satisfaction of the Boundary Conditions

It is not possible to satisfy all the boundary conditions continuously with the type solutions employed herein. Therefore, a solution procedure will be used, which satisfies the boundary conditions at discrete points. An efficient function to be employed in this procedure can be constructed from each of the component complementary solutions. To this end, each family (with unknown constants such as A_1 , A_2 , B_1 , and B_2) is made to satisfy as many boundary conditions as possible while leaving one free constant. Thus, three of the four unknowns are evaluated from some of the boundary conditions, and the fourth unknown will be evaluated in accordance with the remaining conditions by the "Least-Squares Point-Matching" procedure.

The symmetry conditions with respect to the x axis, Equation 7a, are identically satisfied for all values of y and n (including n = 0) by virtue of the trigonometric variation. Similar requirements with respect to the y direction Equation 7b, lead to the relations, for all values of x and $n \ge 1$,

$$\left[q_{1}^{3} - 3q_{1}p_{1}^{2} + (2+\nu) \alpha_{n}^{2}q_{1} + p_{1} \left\{ \frac{(1-\nu^{2})A}{DR_{x}^{2}} \right\}^{1/2} \right] A_{1}$$

$$- \left[p_{1}^{3} - 3q_{1}^{2}p_{1} - (2+\nu) \alpha_{n}^{2}p_{1} + q_{1} \left\{ \frac{(1-\nu^{2})A}{DR_{x}^{2}} \right\}^{1/2} \right] B_{1}$$

$$+ \left[q_{2}^{3} - 3q_{2}p_{2}^{2} + (2+\nu) \alpha_{n}^{2}q_{2} + p_{2} \left\{ \frac{(1-\nu^{2})A}{DR_{x}^{2}} \right\}^{1/2} \right] A_{2}$$

$$- \left[p_{2}^{3} - 3q_{2}^{2}p_{2} - (2+\nu) \alpha_{n}^{2}p_{2} + q_{2} \left\{ \frac{(1-\nu^{2})A}{DR_{x}^{2}} \right\}^{1/2} \right] B_{2} = 0$$
 (27a)

$$q_1 A_1 + p_1 B_1 + q_2 A_2 + p_2 B_2 = 0$$
 (27b)

$$- p_1 A_1 + q_1 B_1 - p_2 A_2 + q_2 B_2 = 0$$
 (27c)

$$\begin{bmatrix} p_1^3 - 3p_1q_1^2 - (2-\nu)\alpha_n^2 p_1 \end{bmatrix} A_1 + \begin{bmatrix} q_1^3 - 3p_1^2 q_1 + (2-\nu)\alpha_n^2 q_1 \end{bmatrix} B_1$$

+
$$\begin{bmatrix} p_2^3 - 3p_2q_2^2 - (2-\nu)\alpha_n^2 p_2 \end{bmatrix} A_2 + \begin{bmatrix} q_2^3 - 3p_2^2 q_2 + (2-\nu)\alpha_n^2 q_2 \end{bmatrix} B_2 = 0 \quad (27d)$$

Making use of Equations 15, 27b and 27c in Equations 27a and 27d and simplifying, results in the following compact set of equations

$$(q_1b - p_1a)A_1 + (p_1b + q_1a)B_1 - (q_2b - p_2a)A_2 - (p_2b + q_2a)B_2 = 0$$
 (28a)

$$q_1A_1 + p_1B_1 + q_2A_2 + p_2B_2 = 0$$
 (28b)

$$-p_1A_1 + q_1B_1 - p_2A_2 + q_2B_2 = 0$$
 (28c)

$$-(p_1b+q_1a)A_1+(q_1b-p_1a)B_1+(p_2b+q_2a)A_2-(q_2b-p_2a)B_2=0 \quad (28d)$$

The above system of homogeneous equations is linearly independent and therefore has the trivial solution, $A_1 = A_2 = B_1 = B_2 = 0$. Thus, the form of the solution does not admit to termwise satisfaction of the symmetry conditions. However, in the solution procedure to be employed, all the boundary conditions which are not satisfied continuously will be satisfied at specified points. With this in mind, Equation 28d is arbitrarily omitted and the remaining three equations are solved in the terms of A_1 . Consequently, all the field quantities will be given in terms of the undetermined constant A_1 . This constant, A_1 , will be evaluated by "Least-Squares Point-Matching". One of the conditions to be matched is the vanishing of the transverse shear force at y = 0, which is required to satisfy Equation 28d. A similar argument for the companion solution (Equation 26) results in an additional constant A_3 , which must be evaluated in the same manner as was employed for A_1 .

For the special case n = 0, the symmetry conditions lead to the non-vanishing field equations

$$w = A_{0} (\cos \beta_{0} y + \sin \beta_{0} y) e^{-\beta_{0} y}$$
(29a)

$$N_{x} = [(1-\nu^{2})AD]^{1/2} 2\beta_{o}^{2} e^{-\beta_{o}y} A_{o} (\cos\beta_{o}y + \sin\beta_{o}y)$$
(29b)

$$M_{x} = -2\nu D\beta_{0}^{2} e^{-\beta_{0}y} A_{0} (\sin\beta_{0}y - \cos\beta_{0}y)$$
(29c)

$$M_{y} = -2D\beta_{0}^{2} e^{-\beta_{0}y} A_{0} (\sin\beta_{0}y - \cos\beta_{0}y)$$
(29d)

$$Q_{y} = -4D\beta_{0}^{\beta} e^{-\beta_{0}y} A_{0}\cos\beta_{0}y$$
(29e)

$$v = \frac{-\beta_0 y}{\beta_0} A_0 [1 - \cos \beta_0 y]$$
(29f)

where again, A_0 is the undetermined coefficient and is to be evaluated by point-matching methods.

Thus, the dome solutions may be combined with undetermined parameters A_i and B_i as follows:

$$u_{\mathbf{D}} = \sum_{i=0}^{\mathbf{I}} \mathbf{A}_{i} \left(\overline{u}_{1i}(\mathbf{x}, \mathbf{y}) \cos \theta + \overline{v}_{1i}(\mathbf{x}, \mathbf{y}) \sin \theta \right) + \sum_{j=0}^{\mathbf{J}} \mathbf{B}_{j} \left(\overline{u}_{2j} \cos \theta + \overline{v}_{2j} \sin \theta \right) + u_{\mathbf{p}} \quad (30a)$$

$$\mathbf{v}_{\mathbf{D}} = \sum_{i=0}^{\mathbf{I}} \mathbf{A}_{i} \left(\overline{\mathbf{u}}_{1i}(\mathbf{x}, \mathbf{y}) \sin \theta + \overline{\mathbf{v}}_{1i} \cos \theta \right) + \sum_{j=0}^{\mathbf{J}} \mathbf{B}_{j} \left(-\overline{\mathbf{u}}_{2j} \sin \theta + \overline{\mathbf{v}}_{2j} \cos \theta \right) + \mathbf{v}_{p}$$
(30b)

$$w_{D} = \sum_{i=0}^{I} A_{i} w_{1i} (x, y) + \sum_{j=0}^{J} B_{j} w_{2j} (x, y)$$

$$M_{r} = \sum_{i=0}^{I} A_{i} (m_{1ix} \frac{1 + \cos 2\theta}{2} + m_{1iy} \frac{1 - \cos 2\theta}{2} + m_{1ixy} \sin 2\theta) + \sum_{j=0}^{J} B_{j} (m_{2jx} \frac{1 + \cos 2\theta}{2} + m_{2jy} \frac{1 - \cos 2\theta}{2} + m_{2jxy} \sin 2\theta)$$

ŀ

ļ

ŀ

ļ

ŀ

l

ŀ

ŀ

$$N_{r} = \sum_{i=0}^{I} A_{i} \left(n_{1ix} \frac{1 + \cos 2\theta}{2} + n_{1iy} \frac{1 - \cos 2\theta}{2} + n_{1ixy} \sin 2\theta \right) + \sum_{j=0}^{J} B_{j} \left(n_{2jx} \frac{1 + \cos 2\theta}{2} + n_{2jy} \frac{1 - \cos 2\theta}{2} + n_{2jxy} \sin 2\theta \right) + N_{p}(x, y)$$

$$\overline{N}_{r\theta} = \sum_{i=0}^{I} A_{i} (n_{1iy} - n_{1ix} \frac{\sin 2\theta}{2} + n_{1ixy} \cos 2\theta)$$

$$+ \sum_{j=0}^{J} B_{j} (n_{2jy} - n_{2jx} \frac{\sin 2\theta}{2} + n_{2jxy} \cos 2\theta) + \overline{N}_{p}$$
(30f)

$$\overline{\mathbf{Q}}_{\mathbf{r}} = \sum_{i=0}^{\mathbf{I}} \mathbf{A}_{i} (\mathbf{q}_{1ix} \cos\theta + \mathbf{q}_{1iy} \sin\theta - 2\mathbf{m}_{1ixy} \sin 2\theta + (\mathbf{m}_{1ix} - \mathbf{m}_{1iy}) \cos 2\theta) + \sum_{j=0}^{\mathbf{J}} \mathbf{B}_{j} (\mathbf{q}_{2jx} \cos\theta + \mathbf{q}_{2jy} \sin\theta - 2\mathbf{m}_{2jxy} \sin 2\theta + (\mathbf{m}_{2jx} - \mathbf{m}_{2jy}) \cos 2\theta) (30g)$$

$$\Phi_{\mathbf{r}} = \sum_{\mathbf{i}=0}^{\mathbf{I}} \mathbf{A}_{\mathbf{i}} \left(\varphi_{\mathbf{1}\mathbf{i}\mathbf{x}} \cos \theta + \varphi_{\mathbf{1}\mathbf{i}\mathbf{y}} \sin \theta \right) + \sum_{\mathbf{j}=0}^{\mathbf{J}} \mathbf{B}_{\mathbf{j}} \left(\varphi_{\mathbf{2}\mathbf{j}\mathbf{x}} \cos \theta + \varphi_{\mathbf{2}\mathbf{j}\mathbf{y}} \sin \theta \right)$$
(30h)

where the \overline{u}_{1i} , \overline{u}_{2j} , \overline{v}_{1i} ,..., φ_{2jy} are the unit solutions, functions of x and y and $y(\theta = \tan^{-1} \frac{y}{x})$, as developed in subsection C-2. For example, \overline{u}_{1i} used in

Equation (30a) is the u of (22a), whereas the \overline{u}_{2j} of (30a) is the u of (22a) after the replacements indicated by Equation (26) have been made.

Although the solution, characterized by negative exponentials in the y direction, gives rise to a decaying stress field, the companion solution will have a trigonometric variation in the same direction. Therefore, the far field boundary conditions, Equations 6, will be satisfied in a least-squares sense. For example, consider the first condition of 62. At $x = L_x$, the particular solution satisfies the boundary condition and the remaining two solutions must vanish. For n equal to an odd integer, N_x given by Equation 20a vanishes identically. However, this will not be the case for n equal to even integers. The companion solution will decay exponentially for all values of the index. The vanishing of the complementary solutions at $x = L_x$ must be accomplished pointwise.

The general description presented here is characteristic of all the far field boundary conditions (Equations 6). Satisfaction of these conditions as well as the shell joining will be described in Section IV.

SECTION IV FLARE-DOME SHELL POINT-MATCHING

A. INTRODUCTION

ŀ

ľ

As has been shown, solutions for the dome and flare shell equations of equilibrium and compatibility consist of truncated series [Section II Equations (39) and Section III Equations (30)], each term of which satisfies the homogeneous differential equations and is multiplied by an undetermined coefficient, and particular solutions which satisfy the nonhomogeneous shell equations.

The coefficients of the solutions to the homogeneous equations must now be determined to obtain expressions which satisfy the boundary conditions at the top edge of the cylinder-flare, the flare-dome junction, and the far field of the dome. In addition, the resulting solutions must satisfy conditions of symmetry about the x and y axes. The symmetry conditions follow from the assumption of constant (but different from one another) curvatures in the principal dome directions.

B. POINT-MATCHING

To determine the A_i and B_i of Equations (30) (Section II), boundary and symmetry conditions will be satisfied pointwise. For example, at the flare-dome intersection,

compatibility requires:

$^{\mathrm{U}}\mathrm{F}$	=	U _D	
v _F	=	v _D	(1)
w _F	=	W _D	(1)
⊈ S	=	¢ r	

and equilibrium requires:

$$N_{S} = N_{r}$$

$$N_{S\theta} = N_{r\theta}$$

$$\bar{Q}_{S} = \bar{Q}_{r}$$

$$M_{S} = -M_{r}$$
(2)

Therefore, select one point, r_i , θ_t (see Figure 9) at the intersection curve of the two shells, and generate eight linear equations in the A, B, C for each point.

In a similar manner, point-matching the dome membrane conditions at $x = L_x$ (Figure 9) and various y's:

$$N_x = membrane force$$
 (3)
 $N_{xy} = 0$
 $Q_x = 0$
 $M_x = 0$

at $y = L_v$ (Figure 9) and various x's:

$$N_y = membrane \text{ force}$$

 $N_{xy} = 0$
 $\overline{Q}_y = 0$
 $M_y = 0$
(4)

leads to four simultaneous equations in the A_i and B_j for each point matched.

Figure 9. Typical Array of Matched Points

Symmetry conditions about the x and y axes, not automatically satisfied by the trial functions are point-matched:

$$at_x = 0$$
 and various y's, $\overline{Q}_y = 0$ (5)

while

at
$$y = 0$$
 and various x's, $\overline{Q}_{y} = 0$ (6)

Conditions at the cylinder edge need not be point-matched, since the M_S , N_S , $N_{S\theta}$, \overline{Q}_S automatically satisfy membrane boundary conditions created by internal pressurization.

By judicious selection of the points matched, an equal number of unknowns $(A_i, B_j \text{ and } C_k^n)$ and linear point-matched algebraic equations may be obtained. This can be achieved by the appropriate choice of the maximum Fourier index \bar{n} and the maximum dome summation indeces I and J. These are then solved simultaneously for the constants and reinserted in the series solutions of Sections II and III. However, if the number of unknowns is less than the number of equations, a solution may be obtained in the least-square sense. This is explained in the following subsection.

C. LEAST-SQUARES

Let the system of linear equations, generated as described above, be denoted as

$$C_{11} x_{1} + C_{12} x_{2} + C_{13} x_{3} + \dots + C_{1n} x_{n} - T_{1} = 0$$

$$C_{21} x_{1} + C_{22} x_{2} + C_{23} x_{3} + \dots + C_{2n} x_{n} - T_{2} = 0$$

$$C_{31} x_{1} + C_{32} x_{2} + C_{33} x_{3} + \dots + C_{3n} x_{n} - T_{3} = 0$$

$$(7)$$

$$C_{m1} x_{1} + C_{m2} x_{2} + C_{m3} x_{3} + \dots + C_{mn} x_{n} - T_{m} = 0$$

where m > n, and $x_1, x_2 \dots x_n$ are the unknowns.

The equations (7) may be expressed in matrix form as

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} \{ \mathbf{x} \} - \{ \mathbf{T} \} = \mathbf{0} \tag{8}$$

where [C] is the m x n matrix of the coefficients $C_{11}, C_{12}, \ldots, C_{mn}; \{x\}$ is the column matrix $x_1, x_2, \ldots x_n$, and $\{T\}$ is the column matrix T_1, T_2, \ldots, T_m . The well-known least squares procedure is to pre-multiply the equation (8) by the transpose of [C], say [C]', that is, form the equation

$$[C]'[C] \{x\} - [C]' \{T\} = 0$$
(9)

The resulting system of equations (9) is n equations in n unknowns. Furthermore, if [C] is of rank n and [C]'[C] is of rank n, then the system of equations has a unique solution. It shall now be established that the above procedure minimizes the sum of the squares of the residuals, $\sum_{i=1}^{m} e_i^2$ where

$$e_i = C_{i1} x_1 + C_{i2} x_2 + \dots + C_{in} x_n - T_i$$
, (10)

thereby justifying the name "least-squares."

For the purposes of economy of notation, we rewrite (10) as

$$e_i = C_{ik} x_k - T_i$$
 (k = 1, 2, ... n) (11)
(i = 1, 2, ... m; m > n)

where the repeated subscript indicates summation and the rank of the [C] matrix is n.

Let y be defined by

$$\mathbf{y} = \mathbf{e}_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \tag{12}$$

For stationary values,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}_{j}} = \mathbf{0} = 2 \mathbf{e}_{i} \frac{\partial \mathbf{e}_{i}}{\partial \mathbf{x}_{j}} = 2 \mathbf{e}_{i} \mathbf{C}_{ij} \qquad (j = 1, 2, ...n)$$
(13)

From (11) and (13),

$$C_{ik} C_{ij} x_k - T_i C_{ij} = 0$$
 (14)

Now $C_{ik} C_{ij}$ is the kj element of [C]'[C] which is taken to be of ran n, that is, it is nonsingular. Let x_k^0 be the unique solution of (14).

Now consider $y = y(x_k)$. Then by Taylor's expansion about x_k^0 ,

$$y (x_{k}) = y (x_{k}^{0}) + \left(\frac{\partial y}{\partial x_{k}}\right)_{0} (x_{k} - x_{k}^{0}) + \left(\frac{\partial^{2} y}{\partial x_{j} \partial x_{k}}\right)_{0} (x_{j} - x_{j}^{0}) (x_{k} - x_{k}^{0})$$
(15)

The series terminates because all higher derivatives are zero.

Therefore, since the first partial derivatives are zero,

$$y(x_{k}) - y(x_{k}^{o}) = \left(\frac{\partial^{2} y}{\partial x_{j} \partial x_{k}}\right)_{o} (x_{j} - x_{j}^{o}) (x_{k} - x_{k}^{o})$$
$$y(x_{k}) - y(x_{k}^{o}) = 2 C_{ik} C_{ij} \delta_{j} \delta_{k}$$
(16)

$$\delta_{j} = x_{j} - x_{j}^{0}$$

$$y(x_{k}) - y(x_{k}^{0}) = 2 (C_{ij} \delta_{j}) (C_{ik} \delta_{k})$$

$$= \text{ sum of squares } \geq 0$$

$$(17)$$

Thus,

where

ļ

ļ

ľ

ŀ

ŀ

ŀ

ļ

ľ

$$y(x_{k}) - y(x_{k}^{0}) \ge 0$$

But $C_{ik} \delta_k = 0$ implies that $\delta_k = 0$, since the rank of C is n. Therefore

$$y(x_k) - y(x_k^0) > 0$$
 if $x_k - x_k^0 \neq 0$

and consequently $y(x_k^{o})$ is an absolute minimum.

SECTION V COMPUTER PROGRAM

A. INTRODUCTION

A computer program which employs the analyses presented in Sections Π through IV has been developed. It consists of six separate parts as described below:

Part 1: Computer unit solutions of the flare equations. Output from this portion of the program includes five tapes to be input in subsequent parts of the program. Obtains the point-matching matrix $[a_{ii}]$, and right-Part 2: hand side $\{y_i\}$ for the system $[a_{ij}] \{x_i\} = \{y_i\}$, where the x_i are the unknowns A_i , B_i , and C_k^n . Output from this part is used as input to Part 3. Computes the least-square matrix if $[a_{ii}]$ is not a Part 3: square matrix (if it is square, this step is omitted), normalizes the point-matching equations, orders them to facilitate more accurate solutions, and solves for the A_i , B_i , and C_k^n , using double precision. These are reproduced on tape which is used in Parts 4, 5, and 6. Part 4: Determines the dome stresses and deflections using the A_i and B_i obtained in Part 3. Part 5: Computes the flare stresses and deflections employing the C_{l}^{n} of Part 3, together with tapes 1 - 5 developed in Part 1. Checks the point-matching equations of Part 2, to determine Part 6: how well they are satisfied, using the A_i , B_i and C_k^n of Part 3 and the $[a_{ii}]$ of Part 2.

It should be pointed out that although the program appears segmented, it is possible to run each part consecutively in a single machine pass; if the input cards for each section are properly interspersed between the program decks of successive parts.

B. GEOMETRY OF FLARE

Application of the matrix solution of Section II to typical flared nozzle problems requires the specification of certain geometric quantities, from which the system-properties matrices A_i , B_i , C_i , and g_i , i = 0, 1, 2, ..., N, may be computed. Two input options, explained below, are available for this purpose.

Option 1 inputs an array of axial and radial coordinates on the shell's meridional middle-surface, as well as the thickness and meridional curvature at these locations (see Figure 10a). A cubic curve fit is then made through the first three points with the additional condition that slopes of shell thickness, meridional curvature, and middle-surface, are zero with respect to the shell axis. This simplification is permissible, since the nozzle starts out as a circular cylinder of uniform wall thickness. The length of curve between the first two points is then divided into $\bar{\mathbf{N}}$ finite difference intervals, equally spaced with respect to the nozzle's axial coordinate. A cubic fit is then made, using the second, third, and fourth points, as well as the slope of the previous cubic, at the second input station. This backstepping of the cubic fit is continued to insure a smooth flare contour. The interval between the second and third points is again subdivided into $\bar{\bar{N}}$ finite difference intervals, equally spaced with respect to the nozzle axis. This process is continued until finally, the last three input points \overline{N} -2, \overline{N} -1, and \overline{N} , as well as the slope of the previous cubic slope at the \overline{N} -2 station, are used to generate the last cubic, which is then subdivided into $2\overline{\bar{N}}$ equal intervals, between $\overline{N}-2$ and N, along the cylinder axis. Thus, the nozzle geometry is subdivided into N = $\overline{N} \times \overline{N}$ finite difference intervals with N + 1 end points denoted by i = 0, 1, 2, ..., N. Next, dimensionless arc-lengths, Δ_i , are computed using the Pythagorean Theoreum and coordinates of adjacent points. Then, the following quantities, in the order indicated, are computed employing parabolic central finite-difference differentiations where appropriate:

$$\rho_{i}, \rho_{i}', \gamma_{i}, \omega_{0i} = \frac{\sqrt{1 - (\rho_{i}')^{2}}}{\rho_{i}}, \omega_{s}',$$

$$b_{i} = \frac{t_{i}/t_{c}}{1 - \nu^{2}}, b_{i}', d_{i} = \frac{(t_{i}/t_{c})^{3}}{12(1 - \nu^{2})}, d_{i}', \lambda = \frac{t_{c}}{r_{c}}$$

60

a. Input Option 1

ļ

ļ

Ē

b. Input Option 2

Figure 10. Cylinder-Flare Input Geometry

It is now possible to compute the a's and b's of Appendices 1 and 2, from which the matrices of Section II, Equations (14b, c, d, etc.) may be obtained.

Option 2 inputs the radius, a, of a circular cylinder and the semi-horizontal, α , and vertical, β , axes of a quarter of an elliptical torus which mates smoothly with the cylinder (see Figure 10b). The variables z_f , t_f , and t_D permit a quadratic thickness variation in the flare. The cylinder, of length S_c, is divided into M equally spaced difference intervals, while the total number of intervals for the combined shell is N_{F} . The elliptical dimensionless arc lengths, are given by

$$\Delta_{i} = \sqrt{\frac{(r_{i} - r_{i-1})^{2} + (\bar{z}_{i} - \bar{z}_{i-1})^{2}}{r_{c}}}$$

where:

 $r_i = a + \alpha (1 - \cos \varphi_i)$

$$\bar{z}_i = \beta \sin \phi_i + S_i$$

and:

$$z_{i} = \beta \sin \phi_{i} + S_{c}$$

$$\varphi_{i} = \frac{(i-M) \pi}{2(N-M)} , i = M + 1, M + 2, \dots, N$$

The ω_{si} and ω'_{si} are computed from

$$\omega_{si} = -r_{c} \beta \alpha \left[\alpha^{2} \sin^{2} \varphi + \beta^{2} \cos^{2} \varphi_{i}\right]^{-3/2}$$
$$\omega_{si}' = 3 \left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right) \omega_{s}^{2} \cos \varphi_{i} \sin \varphi_{i}$$

and the remaining quantities, ρ_i , ρ'_i , γ_i , b_i , b'_i , d_i , d'_i , and $\omega_{\theta i}$ are computed as for Option 1.

C. DOME GEOMETRY

For a complete description, the dome geometry simply requires the principal curvatures, the dome boundaries L_x , L_y , a constant thickness t_D , and boundary radius, r_i , at which the dome joins with the flare.

The outer boundaries of the dome, defined by L_x and L_y , remain somewhat arbitrary in that they are usually not uniquely defined, but must be chosen within certain bounds. These bounds are determined as follows:

- (1) The minimum distance away from the flare intersection curve at which localized nozzle attachment effects must be essentially negligable is a lower bound for L_x and L_y and,
- (2) L_x and L_y must be sufficiently small so as not to violate the dome assumptions such as constant principal radii of curvature and shallowness.

Based on experimental data, the minimum L_x and L_y should be approximately four times the flare-dome intersection radius. However, the only true method of establishing whether the magnitudes of L_x and L_y are adequate, is to rerun any given problem with different $L_{x's}$ and $L_{y's}$. This should be repeated until the stress and deflection results stabilize to the same value near the nozzle junction, while still decaying to the membrane stress field at L_x and L_y . These same comments are applicable for the cylinder length coordinate at z = 0, where it is assumed that membrane conditions prevail.

D. POINT-MATCHING

The points at which boundary conditions will be matched are indicated by dots in Figure 11.

NDY is the number of points along the y axis at which \bar{Q}_{x} is set equal to zero. The YD are the ordinates of these points. In a similar manner, NDX and NDXP establish the points at which \bar{Q}_{y} is set equal to zero.

NDXP is the number of points along $y = L_y$ at which membrane boundary conditions, of which there are four, are satisfied, and XPD are the specific points. Similarly, NDYP and YPD relate to membrane conditions along $x = L_x$. The membrane condition used are presented in Section IV, Equations (3) and (4).

NDTHP is the number of points along the flare-dome intersection at which compatibility and equilibrium are satisfied (Equations (1) and (2) of Section IV). The specific points are defined by the THDP.

Figure 11. Points at Which Boundary Conditions are Matched

E. NOMENCLATURE AND PROGRAM FLOW CHARTS

The Input Nomenclature is presented in the following pages and Appendix IV contains the program Flow Charts. In addition, a separate simplified User's Manual, supplements this report.

Physical Symbols	Dimensional Units	Program Symbols	Physical Description
Ε	psi	EF, ED, ELAS	Modulus of elasticity; assumed the same for dome-flare-cylinder configuration
γ		NU, NUD	Poisson's ratio
р	psi	PSI	Internal pressure
r _c	in.	RC	Characteristic radius
^t c	in.	тс	Characteristic radius

INPUT NOMENCLATURE

Physical Symbols	Dimensional Units	Program Symbols	Physical Description			
$\sigma_{\mathbf{c}}$	psi	SIGC	Characteristic stress			
ñ		NBAR	Maximum Fourier index for flare			
	If NC option 2 = 1, use the following flare input geometry. (Reference Figure 9a)					
Ñ		NB	Number of flare input coordinate points			
Ň		NBB	Number of finite-difference intervals into which segment between successive input points is subdivided			
N _F		NF	Number of flare finite difference intervals = \overline{N} . $\overline{\overline{N}}$			
a	in.	A, ACR	Radius of cylinder			
r'k	in.	RPK	Radii of cylinder-flare input points			
z'k	in.	ZPK	Vertical coordinate of cylinder- flare input points			
t'o	in.	TZP	Thickness at top of cylinder			
ω΄	in. ⁻¹	OMZP	Curvature at top of cylinder			
$\omega'_{\mathbf{k}}$	in. ⁻¹	ОМРК	Curvature at cylinder-flare input points			
	If NC Option 2 = 0, (Referen	use the following t nce Figure 9b)	flare input geometry.			
α	in.	ALPHA	Horizontal semi-axis (ellipse) for flare geometry			
β	in.	BETA	Vertical semi-axis (ellipse) for flare geometry			
^z F	in.	ZF	Flare thickness parameter; adjusted so quadratic flare thickness approx- imates desired thickness variation			
s _c	in.	SC	Cylinder length			
τ _D	in.	TTDD	Flare thickness parameter			
L	in.	LX	Dome half-span in x direction			
Ly	in.	LY	Dome half-span in y direction			

P

Physical	Dimensional	Program	
Symbols	Units	Symbols	Physical Description
^{t}D	in.	TD	Dome thickness
$1/R_{x}$	in. ⁻¹	RATIO X	Dome curvature in x direction
$1/R_v$	in. $^{-1}$	RATIO Y	Dome curvature in y direction
I		ID	Maximum index on series which decays exponentially in y direction
J		JD	Maximum index on series which decays exponentially in x direction
NDY		NDY	Number of points matched along y axis
NDX		NDX	Number of points matched along x axis
NDYP		NDYP	Number of points matched along $y = L_{y}$
NDXP		NDXP	Number of points matched along $x = L_x$
NDTHP		NDTHP	Number of points matched along $r = r_i$
r _i	in.	RINIT	Radius of flare-dome intersection
Δr (or ΔR)	in.	DELTAR	Radial increment for output stations for stress and deflection computation
x	in.	XO	Cartesian output stations
Δx	in.	DELTAX	Increment for cartesian output stations
Δy	in.	DELTAY	Increment for cartesian output stations
θο	degrees	THETAO	Polar output stations
$\Delta \theta$	degrees	DTHETA	Polar increment for output stations
θ_{ℓ}	degrees	THLAST	Final angle for polar output stations

SECTION VI

REFERENCES

- Mainhardt, J., et al., "Development of Technology for Flaring of Nozzle Openings," Republic Aviation Corporation Reports No. RAC 981, 1106, 1207, 1734, Phases I, II, III and IV, NASA contract no. NAS 8-2698.
- 2. Bijlaard, P. P., "Computation of the Stresses from Local Loads in Spherical Pressure Vessels or Pressure Vessel Heads, "Welding Research Council Bulletin Series, Number 34, March 1957.
- 3. Bijlaard, P.P., "Stresses in a Spherical Vessel from Radial Loads Acting on a Pipe; Stresses in a Spherical Vessel from External Moments Acting on a Pipe; Influence of a Reinforcing Pad on the Stresses in a Spherical Vessel Under Local Loading," Welding Research Council Bulletin Series Number 49, April 1959.
- Bijlaard, P.P., "Stresses in Spherical Vessels from Local Loads Transferred by a Pipe; Additional Data on Stresses in Cylindrical Shells Under Local Loading," Welding Research Council Bulletin Series, Number 50, May 1959.
- 5. Galletly, G.D., "Analysis of Discontinuity Stresses Adjacent to a Central Circular Opening in a Hemispherical Shell," Navy Dept., David W. Taylor Model Basin, Research and Development Report 870, May 1956.
- Conway, H.D. and Leissa, A.W., "Application of the Point-Matching Method to Shallow-Spherical-Shell Theory," J. Appl. Mech., 29, pp. 745-747 (1962).

67
- Conway, H.D., "The Bending, Buckling, and Flexural Vibration of Simply Supported Polygonal Plates by Point-Matching," <u>J. Appl. Mech.</u>, 28, pp. 288-291 (1961).
- 8. Ojalvo, I.U. and Linzer, F.D., "Improved Point-Matching Techniques", Quart. J. Mech. and Appl. Math., XVIII, pp. 41-56 (1965).
- 9. Flugge, Wilhelm, "Stresses in Shells," Springer-Verlag, Berlin/Göttingen/ Heidelberg, pp. 312-318, 1960.
- Budiansky, B., and Radkowski, P. P., "Numerical Analysis of Unsymmetrical Bending of Shells of Revolution," AIAA Journal, Vol. 1, No. 8, pp. 1833-1842, August, 1963.
- 11, Love, A.E.H., "A Treatise on the Mathematical Theory of Elasticity," Fourth Ed., The University Press, (Cambridge), p. 531, 1934.
- Marguerre, K., "Zur Theorie Der Gekrümmten Platte Grosser Formänderung," Proceedings of the Fifth International Congress for Applied Mechanics, John Wiley and Sons, N.Y., pp. 93-101 (1939).
- 13. Timoshenko, S. and Woinowsky-Krieger, S., "Theory of Plates and Shells," Second Ed., McGraw-Hill (1959).
- 14. Wang, C., "Applied Elasticity," McGraw-Hill (1953).

APPENDIX I

FORMULAS FOR THE "a" COEFFICIENTS OF SECTION II

$$\begin{aligned} a_{1} &= \left[b + d\lambda^{2} (\omega_{2} - \omega_{b}) \omega_{b} \right] \\ a_{2} &= \left[8b + b' + 8d\lambda^{2} (\omega_{5} - \omega_{b})^{2} + d'\lambda^{2} \omega_{b} (\omega_{5} - \omega_{b}) \right. \\ &+ d\lambda^{2} \omega_{5}' \omega_{b} \right] \\ a_{3} &= \delta (\nu b' - 8b) - \nu b \omega_{5} \omega_{b} - \frac{b((-\nu)}{2} (\frac{n}{p})^{2} \\ &+ \nu \lambda^{2} \left[(8d'\omega_{5} - 8^{2}d\omega_{5} - d\omega_{5}^{2}\omega_{b}) (\omega_{5} - \omega_{b}) \right. \\ &+ 8d\omega_{5}' (2\omega_{5} - \omega_{b}) + \nu d8^{2} \omega_{5}^{2} \right] \\ &- \lambda^{2} d \left(8^{2} + \frac{((-\nu))}{2} (\frac{n}{p})^{2} \right) (3\omega_{5}^{2} - 3\omega_{b} \omega_{5} + \omega_{b}^{2}) \\ a_{4} &= \frac{b((+\nu))}{2} \frac{n}{p} + d\lambda^{2} \frac{n}{p} \left[\frac{(+\nu)}{2} \omega_{5} \omega_{0} - \nu \omega_{0}^{2} \right] \\ a_{5} &= \left[\nu b' - \frac{(3-\nu)}{2} 8b\right] \frac{n}{p} + \nu \lambda^{2} \frac{n}{p} \left[d'\omega_{b} (\omega_{5} - \omega_{b}) \right. \\ &+ d\omega_{0} \omega_{5}' \right] + \lambda^{2} (\frac{n}{p}) 8d \left[-((-\nu)) \omega_{5}^{2} \right] \\ &- \left(\frac{(+5\nu)}{2} - \nu^{2} \right) \omega_{5} \omega_{0} + 2\nu \omega_{0}^{2} \right] \\ a_{5}' &= -\nu d\lambda^{2} \delta (\omega_{5} - \omega_{0}) \\ a_{6} &= b \left(\omega_{5} + \nu \omega_{0} \right) - \nu 8\lambda^{2} \left[d'(\omega_{5} - \omega_{0}) + d\omega_{5}' \right] \\ &+ (1 - \nu^{2}) \delta^{2} \omega_{5} + \frac{(3 - \nu)}{2} (\frac{n}{p})^{2} \omega_{5} - \frac{(1 + \nu)}{2} \omega_{6} (\frac{n}{p})^{2} \right] \\ a_{7} &= b' (\omega_{5} + \nu \omega_{0}) + \lambda^{2} \left(\omega_{5} \omega_{0} + \nu \frac{n^{2}}{p^{2}} \right) \left[d' (\omega_{5} - \omega_{0}) \\ &+ d\omega_{5}' \right] + b \left[8(\omega_{5} - \omega_{0}) + \omega_{5}' \right] + (continued) \end{aligned}$$

$$\begin{split} a_{7} & (continuation) + d\lambda^{2} w_{\theta} (w_{5} - w_{\theta}) w_{5}' \\ &+ d8\lambda^{2} \left[(w_{5} - w_{\theta})^{3} - v_{0} w_{5}^{2} (w_{5} - w_{\theta}) \\ &- (\frac{n}{p})^{2} \left\{ (w_{5} - w_{\theta}) - \frac{(i - 5v)}{2} (w_{5} - w_{\theta}) \\ &+ (i - v^{2}) w_{5} + (i - v) (zw_{5} - w_{\theta}) \right\} \right] \\ a_{8} &= -\lambda^{2} w_{\theta} \\ a_{9} &= \lambda^{2} \left[w_{5}' - 8(i - v) w_{5} \right] \\ a_{i0} &= -\frac{b}{2} \left(\frac{n}{p} \right) (i + v) - \lambda^{2} d w_{\theta} \left(\frac{n}{p} \right) \left[\frac{(i + v)}{2} w_{5} - v_{0} w_{5} \right] \\ a_{i1} &= - \left(\frac{n}{p} \right) \left[\frac{b'(i - v)}{2} + b8 \right] - \left(\frac{n}{p} \right) \lambda^{2} w_{\theta} \left(\frac{(-v)}{2} \right) (d w_{5} + d w_{5}') \\ &- \left(\frac{n}{p} \right) \lambda^{2} 8 d w_{5} \left[\frac{(3 - v)}{2} w_{5} - v_{0} w_{5} \right] \\ a_{i2} &= \frac{(i - v)}{2} \left[b + d\lambda^{2} (w_{5}^{2} - 3w_{\theta} w_{5} + 3w_{6}^{2}) \\ &+ d\lambda^{2} w_{5}' (2w_{5} - 3w_{6}) + d\lambda^{2} 8 (za_{6} - 3u_{5}) (w_{5} - 2w_{6}) \right] \\ a_{i4} &= \frac{(i - v)}{2} \left[b w_{5} w_{6} - b' 8 - d' \lambda^{2} 8 (w_{5}^{2} - 3w_{5} w_{6} + 3w_{6}^{2}) \\ &+ d\lambda^{2} 8 w_{5}' (3w_{6} - 2w_{5}) + d\lambda^{2} 8^{2} (3w_{5} - 2w_{6}) (w_{5} - 2w_{6}) \right] \\ a_{i5} &= \frac{(i - v)}{2} \left[b + \lambda^{2} d w_{6} (w_{5} - v_{5}^{2} w_{6}) \right] \\ a_{i5} &= \frac{(i - v)}{2} \left[(m_{5} + \lambda^{2} d w_{6} (w_{5} - v_{5}^{2} w_{6}) \right] \\ a_{i5} &= \frac{(i - v)}{2} \left[(m_{5} + \lambda^{2} d w_{6} (w_{5} - v_{5}^{2} w_{6}) \right] \end{aligned}$$

$$\begin{split} a_{16} &= \frac{(1-\nu)}{2} \binom{n}{\rho} \lambda^{2} \left[d'(3\omega_{0} - \omega_{5}) - d\omega_{5}' \right] \\ &+ \binom{n}{\rho} 8 d\lambda^{2} \left[(3\omega_{5} - 2\omega_{0}) - 2\nu (\omega_{5} - \omega_{0}) - \nu^{2} \omega_{0} \right] \\ a_{17} &= \frac{(1-\nu)}{2} \binom{n}{\rho} 8 \lambda^{2} \left[d'(\omega_{5} - 3\omega_{0}) + d\omega_{5}' \right] - \frac{b^{n}}{\rho} (\nu_{05} + \omega_{0}) \\ &- 2(1-\nu)\binom{n}{\rho} d8^{3} \lambda^{2} (\omega_{5} - \omega_{0}) - \binom{n}{2} d\lambda^{2} (\omega_{5} - \nu^{2} \omega_{0}) \\ &+ \frac{n}{2\rho} d\lambda^{2} \omega_{5} \omega_{5} \left[(3\omega_{0} - \omega_{5}) - \nu (\omega_{5} + \omega_{0}) \right] \\ a_{18} &= \nu \binom{n}{\rho} \lambda^{2} \omega_{0} \\ a_{19} &= -\nu \lambda^{2} 8 d (\omega_{5} - \omega_{0}) \\ a_{19} &= -b (\omega_{5} + \nu \omega_{0}) - \nu \lambda^{2} 8 d' (\omega_{5} - \omega_{0}) - (1-\nu) d\lambda^{2} \omega_{5} \omega_{6} (\omega_{5} - \omega_{0}) \\ &- \frac{d\lambda^{2}}{2} \binom{n}{\rho}^{2} \left[(3\omega_{5} - \omega_{0}) - \nu (\omega_{5} + \omega_{0}) \right] \\ &- d\lambda^{2} 8^{2} \left[(2-\nu - \nu^{2}) \omega_{5} - (1-\nu) \omega_{6} \right] - \nu d\lambda^{2} 8 \omega_{5}' \\ a_{20} &= -b8 (\nu \omega_{5} + \omega_{0}) - \lambda^{2} d8 \left[\nu \omega_{5}^{3} - (3+\nu - 2\nu^{2}) \omega_{5} \omega_{6} + \omega_{0}^{3} \right] \\ &- \lambda^{2} 8^{2} d' \left[(2-\nu^{2}) \omega_{5} - \omega_{0} \right] - \frac{(1-\nu)}{2} \lambda^{2} \frac{n}{\rho} d' (3\omega_{5} - \omega_{0}) \\ &- \lambda^{3} 8^{3} d \left[2\omega_{0} - (3-\nu^{2}) \omega_{5} \right] - \lambda^{2} 8 d (\frac{n}{\rho})^{2} \left[(\frac{3}{2} + \frac{\nu}{2} - \nu^{2}) \omega_{5} \right] \\ &- \frac{(1+\nu)}{2} \omega_{0} \right] \\ a_{22} &= -\lambda^{2} 8 d \binom{n}{\rho} \left[- \frac{(1-3\nu)}{2} \omega_{5} + \left(\frac{3}{2} - \frac{3}{2} \nu - \nu^{2} \right) \omega_{0} \right] \\ &- \frac{(1-\nu)}{2} \lambda^{2} \binom{n}{\rho} \left[- d'(3\omega_{0} - \omega_{5}) + d\omega_{5}' \right] \end{aligned}$$

$$\begin{aligned} a_{23} &= -b\binom{n}{p} (\forall w_{5} + w_{6}) + \lambda^{2} d\binom{n}{p} w_{5} w_{6} \left[\frac{(1-v)}{2} w_{5} + (\frac{3-v}{2} - v^{2}) w_{6} \right] \\ &- \lambda^{2} \delta d\binom{n}{p} \left[\frac{(1+v)}{2} w_{5} + (\frac{3}{2} - \frac{3}{2}v - v^{2}) w_{6} \right] \\ &- \lambda^{2} \delta^{2} d\binom{n}{p} \left[\frac{(1-v)}{2} - v^{2} w_{5} + (-\frac{3}{2} + \frac{3}{2}v + 2v^{2}) w_{6} \right] \\ &- \lambda^{2} \delta d\binom{n}{p} w_{5} \frac{(1+v)}{2} - \lambda^{2} d\binom{n}{p}^{3} (w_{5} - v^{2} w_{6}) \\ a_{24} &= \lambda^{2} d\left[(1-v^{2}) \delta^{2} + 2(1-v) \frac{(n)}{p}^{2} \right] \\ &+ \lambda^{2} d\left[(1-v^{2}) \delta^{2} + 2(1-v) \frac{(n)}{p}^{2} \right] \\ &+ \lambda^{2} d' \left[(1-v^{2}) \delta^{2} + 2(1-v) \frac{(n)}{p}^{2} \right] \\ &- u_{5} w_{6} - w_{6}^{2} \right] - d\lambda^{2} \binom{m}{2} \frac{(u_{5} - u_{6}) w_{6} (1-v) w_{5}^{2}}{(u_{5} - u_{6}) (v_{6} + u_{6})^{2}} \\ &- (3-2v-v^{2}) w_{5} w_{6} + u_{6}^{2} \right] - d\lambda^{2} \binom{m}{2} \frac{n}{2} \right] \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (w_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \right] \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \right] \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \right] \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \right] \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - v w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \left[\delta (w_{5} - v w_{6}) (u_{6} + v w_{5}) + (3-2v-v^{2}) \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \delta \left[\delta (w_{5} - v w_{6}) (u_{6} + v w_{6}) - v \binom{m}{2} \right]^{2} \\ &- \lambda^{2} \left[\delta (w_{5} - v w_{5}) (u_{6} + v w_{6}) \right]^{2} \\ &- \lambda^{2} \left[\delta (w_{5} + v w_{5}) \frac{m}{2} \right]^{2} \\ &- \lambda^{2} \left[\delta (w_$$

 $a_{32} = \nabla d\left(\frac{\eta}{\rho}\right) w_{\theta}$ $a_{33} = -d$ $a_{34} = - \mathcal{V} d \mathcal{Y}$ $a_{35} = -d\left[\omega_5\left(\omega_5 - \omega_6\right) - \nabla\left(\frac{n}{\rho}\right)^2\right]$ $a_{36} = 1$

APPENDIX II

FORMULAS FOR THE "b" COEFFICIENTS OF SECTION II

$$\begin{split} b_{i} &= b + d\lambda^{2}(w_{5} - w_{0}) w_{0} \\ b_{2} &= v b\partial + v \partial d\lambda^{2}w_{5} (w_{5} - w_{0}) \\ b_{3} &= v b(\frac{n}{\rho}) + v d\lambda^{2}(\frac{n}{\rho}) w_{0} (w_{5} - w_{0}) \\ b_{4}' &= -v \partial d\lambda^{2} (w_{5} - w_{0}) \\ b_{4} &= b (w_{5} + v w_{0}) + d\lambda^{2} (w_{5} - w_{0}) (w_{5}w_{0} + v(\frac{n}{\rho})^{2}) \\ b_{4}'' &= \lambda^{2} (w_{5} - w_{0}) \\ b_{5} &= - \frac{(1 - v)}{2} (\frac{n}{\rho}) (b + \lambda^{2} d w_{5}w_{0}) \\ b_{6} &= \frac{(1 - v)}{2} [b + d\lambda^{2} \{ (w_{5} - w_{0})^{2} + w_{0} (z w_{0} - w_{5}) \}] \\ b_{7} &= -\delta b_{6} \\ b_{8} &= \frac{(1 - v)}{2} d\lambda^{2} (\frac{n}{\rho}) (3w_{0} - w_{5}) \\ b_{9} &= -\delta b_{8} \\ d_{0}' &= \delta v d\lambda^{2} (w_{5} - w_{0}) - v^{2} w_{5}] \\ &+ \frac{(1 - v)}{2} d\lambda^{2} (\frac{n}{\rho})^{2} (3w_{5} - w_{0}) \\ b_{11} &= -\frac{4(-v)}{2} d\lambda^{2} (\frac{n}{\rho}) (3w_{0} - w_{5}) \\ b_{12} &= d\lambda^{2} \delta (\frac{n}{\rho}) [w_{5} - v^{2} w_{0} + \frac{(1 - v)}{2} (3w_{0} - w_{5})] \end{split}$$

 $b_{13} = -z(1-v) d\lambda^{2} (\frac{n}{p})^{2} - d\lambda^{2} \delta^{2} (1-v^{2})$ $b_{14} = d\lambda^{2} \delta [(w_{0} + v_{0} w_{5}) (w_{5} - w_{0}) + (3 - 2v - v^{2}) (\frac{n}{p})^{2}]$ $b_{15} = \lambda^{2}$ $b_{16} = \lambda^{2} \delta (1-v)$

APPENDIX III

SHALLOW SHELL EQUATIONS

A. INTRODUCTION

ľ

ľ

A system of partial differential equations suitable for the analysis of thin, shallow shells was originally developed by Marguerre (Reference 12). The assumption of shallowness, which entails neglecting quantities such as $\left(\frac{x}{R_x}\right)^2$ in comparison to unity, represents an essential simplification in the analysis of arbitrarily shaped shells. Although the use of a shallow shell theory approach offers attractive possibilities for the solution of engineering problems, standard reference texts, such as Flügge (Reference 9) and Timoshenko and Woinowsky-Krieger (Reference 13) do not include the particulars of Marguerre's investigation. Therefore, to insure completeness of the present report, the governing equations for a shallow, elliptic-paraboloidal shell will be developed in detail.

It should be noted that the elliptic paraboloid is capable of representing a variety of shapes provided that

- The region represented is shallow
- The curvatures are essentially constant
- The Gaussian curvature is positive.

The results obtained herein also apply to shells of negative Gaussian curvature, which could be shown by following a similar development using an hyperbolic paraboloid.

The geometric assumptions (these form the basis for the shallow shell theory), the constituent stress-strain relations, and the associated equilibrium equations (compatible with the shallowness assumptions) will be discussed in Subsections B, C, and D, respectively. Reduction of the resulting system of fourteen equations, involving the same number of unknowns, to one fourth order partial differential equation for a complex deflection-stress function, will be presented in subsection E.

B. GEOMETRICAL CONSIDERATIONS

1. Shell Geometry

The geometry of a shell surface is completely determined by specifying the equation of the surface. For the elliptic-paraboloidal shell, with respect to a centrally located Cartesian coordinate system (Figure 5), this surface is represented by

$$z = -\frac{1}{2} \left(\frac{x^2}{R_x} + \frac{y^2}{R_y} \right) = f(x, y)$$
 (A-1)

where R_x and R_y are constants. An arbitrary point on the middle surface is given by the vector

$$\hat{\mathbf{r}} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j} + \mathbf{f}(\mathbf{x}, \mathbf{y})\mathbf{k} \tag{A-2}$$

where i, j, and k are unit vectors aligned in the x, y, and z directions, respectively. The locations of all other field points are measured along a normal (\hat{n}) to the median surface. Thus, a generic point in the shell is given by (Figure 5)

$$\hat{\mathbf{R}}(\mathbf{x},\mathbf{y},\boldsymbol{\zeta}) = \hat{\mathbf{r}} + \boldsymbol{\zeta}\hat{\mathbf{n}}$$
(A-3)

where ζ is measured along the local normal.

A preliminary step in developing the field equations is the construction of a curvilinear coordinate system on the reference surface of the shell. Since this surface is given in Monge's form (Equation A-1), then the Cartesian coordinates x and y are taken as parameters. Thus, the curvilinear coordinate system consists of the parametric curves formed by the intersection of the surface with the planes x = constant and y = constant. Unit vectors, tangent to the coordinate curves are denoted as i_x and i_y (Figure A-1) and are defined as

l

l

Figure A-1. Parametric Curves on an Elliptic-Paraboloidal Shell Surface

$$\mathbf{i}_{\mathbf{x}} = \frac{\frac{\partial \mathbf{\hat{R}}}{\partial \mathbf{x}}}{\left|\frac{\partial \mathbf{\hat{R}}}{\partial \mathbf{x}}\right|}$$
(A-4a)
$$\mathbf{i}_{\mathbf{y}} = \frac{\frac{\partial \mathbf{\hat{R}}}{\partial \mathbf{y}}}{\left|\frac{\partial \mathbf{\hat{R}}}{\partial \mathbf{y}}\right|}$$

in addition the unit normal is

$$\hat{\mathbf{n}} = \begin{vmatrix} \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{x}} & \mathbf{x} & \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{y}} \\ \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{x}} & \mathbf{x} & \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{y}} \end{vmatrix}$$
(A-4b)

Putting Equation A-3, with $\zeta = 0$, into Equations A-4 and making use of Equation A-1 results in

$$i_{x} = \frac{i - \frac{x}{R_{x}} k}{\left[1 + \left(\frac{x}{R_{x}}\right)^{2}\right]^{\frac{1}{2}}}$$

$$i_{y} = \frac{j - \frac{y}{R_{y}} k}{\left[1 + \left(\frac{y}{R_{y}}\right)^{2}\right]^{\frac{1}{2}}}$$

$$\hat{n} = \frac{\frac{x}{R_{x}} i + \frac{y}{R_{y}} j + k}{\left[1 + \left(\frac{x}{R_{x}}\right)^{2} + \left(\frac{y}{R_{y}}\right)^{2}\right]^{\frac{1}{2}}}$$
(A-5)

Considering the shell to be shallow, then
$$\left(\frac{x}{R_x}\right)^2$$
 and $\left(\frac{y}{R_y}\right)^2$ will be negligible

in comparison with unity and Equation A-5 becomes

$$i_{x} = i - \frac{x}{R_{x}} k$$

$$i_{y} = j - \frac{y}{R_{y}} k$$
(A-6)
$$n = \frac{x}{R_{x}} i + \frac{y}{R_{y}} j + k$$

The differential length of arc between two neighboring points, with position vectors $\hat{R}(x, y, \zeta)$ and $\hat{R}+d\hat{R}$, respectively (Figure A-2) is

$$(ds)^2 = d\hat{R} \cdot d\hat{R}$$
 (A-7a)

where

l

Ì

$$d\hat{\mathbf{R}} = \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{x}} d\mathbf{x} + \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{y}} d\mathbf{y} + \frac{\partial \hat{\mathbf{R}}}{\partial \boldsymbol{\zeta}} d\boldsymbol{\zeta}$$
(A-7b)

and to the order of approximation in the analysis

$$\mathbf{d\hat{R}} = \left(\mathbf{i}_{\mathbf{x}} + \zeta \, \frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{x}}\right) \, \mathbf{dx} + \left(\mathbf{i}_{\mathbf{y}} + \zeta \, \frac{\partial \hat{\mathbf{n}}}{\partial \mathbf{y}}\right) \, \mathbf{dy} + \hat{\mathbf{n}} \, \mathbf{d} \, \boldsymbol{\zeta} \tag{A-7c}$$

Putting Equation A-7c into A-7a, and carrying out the indicated operations leads to

Figure A-2. Displacement of a Generic Point in the Shell

İ

i I

L

L

$$(\mathrm{ds})^{2} = \left[\left(1 + \frac{\zeta}{R_{x}} \right)^{2} + \left(\frac{x}{R_{x}} \right)^{2} \right] (\mathrm{dx})^{2} + \left[\left(1 + \frac{\zeta}{R_{y}} \right)^{2} + \left(\frac{y}{R_{y}} \right)^{2} \right] (\mathrm{dy})^{2} + \left[1 + \left(\frac{x}{R_{x}} \right)^{2} + \left(\frac{y}{R_{y}} \right)^{2} \right] (\mathrm{d\zeta})^{2} + \frac{2x\zeta}{R_{x}^{2}} dxd\zeta + \frac{2y\zeta}{R_{y}^{2}} dyd\zeta + \frac{2xy}{R_{x}R_{y}} dxdy$$
(A-7d)

After neglecting terms of the type $\left(\frac{x}{R_x}\right)^2$, $\left(\frac{xy}{R_xR_y}\right)$, etc., when compared to unity, in accordance with the shallowness assumption, Equation A-7d reduces to

$$(ds)^{2} = \left(1 + \frac{\zeta}{R_{x}}\right)^{2} (dx)^{2} + \left(1 + \frac{\zeta}{R_{y}}\right)^{2} (dy)^{2} + (d\zeta)^{2}$$
 (A-8a)

which is the first fundamental form of the shallow elliptic-paraboloidal shell. In addition, the principal radii of curvature, R_1 and R_2 , can be written as

$$\frac{1}{R_{1}} = \frac{1}{R_{x} \left(1 + \left[\frac{x}{R_{x}}\right]^{2}\right) \sqrt{1 + \left(\frac{x}{R_{x}}\right)^{2} + \left(\frac{y}{R_{y}}\right)^{2}}}$$
(A-8b)

$$\frac{1}{R_2} = \frac{1}{R_y \left(1 + \left[\frac{y}{R_y}\right]^2\right) \sqrt{1 + \left(\frac{x}{R_x}\right)^2 + \left(\frac{y}{R_y}\right)^2}}$$

and, as a consequence of the shallowness assumption, $R_{_{\rm X}}$ and $R_{_{\rm Y}}$ are approximately equal to the principal radii of curvature.

Equation A-8a is employed to determine the strain displacement components. The metric coefficients, i.e., $\left(1 + \frac{\zeta}{R_x}\right)$, $\left(1 + \frac{\zeta}{R_y}\right)$, and 1 are also required to define the stress and moment resultants.

2. Strain Displacement Relations

General expressions for the strain components in an arbitrarily shaped body have been derived by Wang (Reference 14). These expressions are referred to an orthogonal curvilinear coordinate system, where a differential length of arc is specified by

$$(ds)^{2} = (A_{1}d\xi_{1})^{2} + (A_{2}d\xi_{2})^{2} + (A_{3}d\xi_{3})^{2}$$
(A-9)

The strain-displacement relations are

$$\epsilon_1 = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{u_2}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} + \frac{u_3}{A_1 A_3} \frac{\partial A_1}{\partial \xi_3}$$
(A-10a)

$$\epsilon_2 = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_3}{A_2A_3} \frac{\partial A_2}{\partial \xi_3} + \frac{u_1}{A_2A_1} \frac{\partial A_2}{\partial \xi_1}$$
(A-10b)

$$\epsilon_3 = \frac{1}{A_3} \quad \frac{\partial u_3}{\partial \xi_3} + \frac{u_1}{A_3 A_1} \quad \frac{\partial A_3}{\partial \xi_1} + \frac{u_2}{A_3 A_2} \quad \frac{\partial A_3}{\partial \xi_2}$$
(A-10c)

$$\gamma_{12} = \frac{A_2}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{u_2}{A_2} \right) + \frac{A_1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{u_1}{A_1} \right)$$
 (A-10d)

$$\gamma_{13} = \frac{A_1}{A_3} \frac{\partial}{\partial \xi_3} \left(\frac{u_1}{A_1} \right) + \frac{A_3}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{u_3}{A_3} \right)$$
(A-10e)

$$\gamma_{23} = \frac{A_3}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{u_3}{A_3} \right) + \frac{A_2}{A_3} \frac{\partial}{\partial \xi_3} \left(\frac{u_2}{A_2} \right)$$
 (A-10f)

where u_1 , u_2 , and u_3 are the displacements in the coordinate directions $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, and $\boldsymbol{\xi}_3$, respectively. The notation used for extensional strains ($\boldsymbol{\epsilon}_1$, $\boldsymbol{\epsilon}_2$, $\boldsymbol{\epsilon}_3$) and shear strains (γ_{12} , γ_{23} , γ_{31}) is in accordance with the usual convention of elasticity.

The strain displacement relations for a shallow elliptic paraboloidal shell can be obtained directly from Equations A-10 by formally identifying the metric coefficients in Equation A-8a with their counterparts in Equation A-9. Therefore, with

ξ1	=	X	
$\boldsymbol{\xi}_2$	=	у	
ξ 3	=	ζ	
A ₁	=	$1 + \frac{\zeta}{R_x}$	
A2	=	$1 + \frac{\zeta}{R_y}$	(A-11)
A_3	=	1	
^u 1	=	U	
$^{u}2$	=	V	
u ₃	=	w	

Equations A-10 become

$$\epsilon_{\mathbf{x}} = \left(\frac{1}{1+\frac{\zeta}{R_{\mathbf{x}}}}\right) \left[\frac{\partial U}{\partial \mathbf{x}} + \frac{\mathbf{w}}{R_{\mathbf{x}}}\right]$$
(A-12a)

$$\epsilon_{\mathbf{y}} = \left(\frac{1}{1+\frac{\zeta}{R_{\mathbf{y}}}}\right) \left[\frac{\partial \mathbf{V}}{\partial \mathbf{y}} + \frac{\mathbf{w}}{R_{\mathbf{y}}}\right]$$
(A-12b)

$$\epsilon_{\zeta} = \frac{\partial w}{\partial \zeta}$$
 (A-12c)

$$\gamma_{xy} = \frac{1}{\left(1 + \frac{\zeta}{R_x}\right)} \frac{\partial V}{\partial x} + \frac{1}{\left(1 + \frac{\zeta}{R_y}\right)} \frac{\partial U}{\partial y}$$
(A-12d)

$$\gamma_{\mathbf{X}\boldsymbol{\zeta}} = \left(1 + \frac{\boldsymbol{\zeta}}{\mathbf{R}_{\mathbf{X}}}\right) \frac{\partial}{\partial \boldsymbol{\zeta}} \left(\frac{\mathbf{U}}{1 + \frac{\boldsymbol{\zeta}}{\mathbf{R}_{\mathbf{X}}}}\right)^{+} \left(\frac{1}{1 + \frac{\boldsymbol{\zeta}}{\mathbf{R}_{\mathbf{X}}}}\right)^{-\frac{\partial \mathbf{W}}{\partial \mathbf{X}}}$$
(A-12e)

$$\gamma_{y\zeta} = \left(\frac{1}{1+\frac{\zeta}{R_{y}}}\right) \frac{\partial w}{\partial y} + \left(1+\frac{\zeta}{R_{y}}\right) \frac{\partial}{\partial \zeta} \left(\frac{V}{1+\frac{\zeta}{R_{y}}}\right)$$
(A-12f)

These relations can be simplified by assuming that normals to the undeformed middle surface remain normal to the deformed middle surface, and are unextended. Mathematically, these assumptions require

$$\gamma_{x\zeta} = \gamma_{y\zeta} = \epsilon_{\zeta} = 0 \tag{A-13}$$

which, in terms of the displacements (Equations A-12c, A-12e, and A-12f), lead to the constraints

$$\frac{\partial \mathbf{w}}{\partial \zeta} = 0$$

$$\frac{\partial}{\partial \zeta} \left(\frac{U}{1 + \frac{\zeta}{R_{\mathbf{x}}}} \right)^{+} \left(\frac{1}{1 + \frac{\zeta}{R_{\mathbf{x}}}} \right)^{2} \quad \frac{\partial \mathbf{w}}{\partial \mathbf{x}} = 0 \quad (A-14)$$

$$\frac{\partial}{\partial \zeta} \left(\frac{V}{1 + \frac{\zeta}{R_{\mathbf{y}}}} \right)^{+} \left(\frac{1}{1 + \frac{\zeta}{R_{\mathbf{y}}}} \right)^{2} \quad \frac{\partial \mathbf{w}}{\partial \mathbf{y}} = 0$$

The first of Equations A-14 specifies that

$$\mathbf{w} = \mathbf{w}(\mathbf{x}, \mathbf{y}) \tag{A-15a}$$

and after integrating the remaining two equations with respect to $\boldsymbol{\zeta}$, the displacements become

$$U(x, y, \zeta) = \left(1 + \frac{\zeta}{R_x}\right) u(x, y, 0) - \zeta \frac{\partial w}{\partial x}$$
(A-15b)

$$V(x, y, \zeta) = \left(1 + \frac{\zeta}{R_y}\right) v(x, y, 0) - \zeta \frac{\partial w}{\partial y}$$
(A-15c)

where u(x, y, 0) and v(x, y, 0) are the median surface displacements.

Substituting Equations A-15 into Equations A-12a, A-12b, and A-12d and assuming that the shell is sufficiently thin so that $\frac{\zeta}{R_x}$ and $\frac{\zeta}{R_y}$ are negligible in comparison to unity, yields the final form of the strain displacement relations for the elliptic-paraboloidal shell. These kinematic relations are

$$\epsilon_{\mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\mathbf{w}}{\mathbf{R}_{\mathbf{x}}} - \zeta \quad \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2}$$

$$\epsilon_{\mathbf{y}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \frac{\mathbf{w}}{\mathbf{R}_{\mathbf{y}}} - \zeta \quad \frac{\partial^2 \mathbf{w}}{\partial \mathbf{y}^2}$$

$$(A-16)$$

$$\psi_{\mathbf{xy}} = \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} - 2\zeta \quad \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x} \partial \mathbf{y}}$$

C. STRESS-STRAIN RELATIONS

Stress-strain relations, suitable for thin shells, are

$$\sigma_{x} = \frac{E}{1-\nu^{2}} (\epsilon_{x} + \nu \epsilon_{y})$$

$$\sigma_{y} = \frac{E}{1-\nu^{2}} (\epsilon_{y} + \nu \epsilon_{x}) \qquad (A-17)$$

$$\tau_{xy} = \frac{E}{2(1+\nu)} \gamma_{xy}$$

where the normal stress, σ_{ζ} , has been omitted, since it does not contribute to the analysis. However, the integral of σ_{ζ} through the thickness of the shell is an essential feature of the problem, as it gives rise to the surface loading.

Substituting the strain displacement relations, Equations A-16, into Equations A-17 results in

$$\sigma_{\mathbf{x}} = \left(\frac{\mathbf{E}}{1-\nu^{2}}\right) \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \nu \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \left(\frac{1}{\mathbf{R}_{\mathbf{x}}} + \frac{\nu}{\mathbf{R}_{\mathbf{y}}}\right) \mathbf{w} - \zeta \qquad \frac{\partial^{2}\mathbf{w}}{\partial \mathbf{x}^{2}} + \nu \frac{\partial^{2}\mathbf{w}}{\partial \mathbf{y}^{2}}$$

$$\sigma_{\mathbf{y}} = \left(\frac{\mathbf{E}}{1-\nu^{2}}\right) \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \nu \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \left(\frac{1}{\mathbf{R}_{\mathbf{y}}} + \frac{\nu}{\mathbf{R}_{\mathbf{x}}}\right) \mathbf{w} - \zeta \qquad \frac{\partial^{2}\mathbf{w}}{\partial \mathbf{y}^{2}} + \nu \frac{\partial^{2}\mathbf{w}}{\partial \mathbf{x}^{2}}$$

$$\tau_{\mathbf{xy}} = \frac{\mathbf{E}}{2(1+\nu)} \left[\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} - 2\zeta \frac{\partial^{2}\mathbf{w}}{\partial \mathbf{x}\partial \mathbf{y}}\right] \qquad (A-18)$$

o

0

which are the requisite stress displacement relations for a thin, shallow, elliptic paraboloidal shell.

In accordance with the thinness assumption, i.e., $\frac{\zeta}{R_x}$ and $\frac{\zeta}{R_y}$ are negligible in comparison with unity, the force and moment resultants are defined by

$$N_{x} = \int_{-t/2}^{t/2} \sigma_{x} d\zeta \qquad M_{x} = \int_{-t/2}^{t/2} \zeta \sigma_{x} d\zeta$$

$$N_{y} = \int_{-t/2}^{t/2} \sigma_{y} d\zeta \qquad M_{y} = \int_{-t/2}^{t/2} \zeta \sigma_{y} d\zeta \qquad (A-19)$$

$$N_{xy} = \int_{-t/2}^{t/2} \tau_{xy} d\zeta \qquad M_{xy} = \int_{-t/2}^{t/2} \zeta \tau_{xy} d\zeta$$

with the associated sign convention shown in Figure 6. The transverse shear resultants, Q_x and Q_y , and the surface load p(x, y) are given by

$$Q_{x} = \int_{-t/2}^{t/2} \tau_{x\zeta} d\zeta$$

$$Q_{y} = \int_{-t/2}^{t/2} \tau_{y\zeta} d\zeta$$

$$-t/2$$

$$t/2$$

$$p (x, y) = \sigma_{\zeta}$$

$$-t/2$$
(A-20)

The force and moment resultants can be evaluated from Equations A-18, and are

.

$$N_{\mathbf{x}} = A \left[\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \nu \ \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \left(\frac{1}{R_{\mathbf{x}}} + \frac{\nu}{R_{\mathbf{y}}} \right) \mathbf{w} \right]$$

$$N_{\mathbf{y}} = A \left[\frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \nu \ \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \left(\frac{1}{R_{\mathbf{y}}} + \frac{\nu}{R_{\mathbf{x}}} \right) \mathbf{w} \right]$$

$$N_{\mathbf{xy}} = \frac{(1 - \nu)}{2} A \left[\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \right]$$

$$M_{\mathbf{x}} = -D \left[\frac{\partial^{2} \mathbf{w}}{\partial \mathbf{x}^{2}} + \nu \ \frac{\partial^{2} \mathbf{w}}{\partial \mathbf{y}^{2}} \right]$$

$$M_{\mathbf{y}} = -D \left[\frac{\partial^{2} \mathbf{w}}{\partial \mathbf{y}^{2}} + \nu \ \frac{\partial^{2} \mathbf{w}}{\partial \mathbf{x}^{2}} \right]$$

$$M_{\mathbf{xy}} = -(1 - \nu) D \quad \frac{\partial^{2} \mathbf{w}}{\partial \mathbf{x} \partial \mathbf{y}}$$

where as usual D = $\frac{Et^3}{12(1-\nu^2)}$ and A = $\frac{Et}{1-\nu^2}$. Consequently, the stresses

can now be expressed in terms of the resultants and Equations A-18 will then take the form

$$\sigma_{\mathbf{X}} = \frac{\mathbf{N}_{\mathbf{X}}}{\mathbf{t}} + \frac{12 \boldsymbol{\zeta} \mathbf{M}_{\mathbf{X}}}{\mathbf{t}^{3}}$$

$$\sigma_{\mathbf{y}} = \frac{\mathbf{N}_{\mathbf{y}}}{\mathbf{t}} + \frac{12 \boldsymbol{\zeta} \mathbf{M}_{\mathbf{y}}}{\mathbf{t}^{3}}$$

$$\boldsymbol{\tau}_{\mathbf{X}\mathbf{y}} = \frac{\mathbf{N}_{\mathbf{X}\mathbf{y}}}{\mathbf{t}} + \frac{12 \boldsymbol{\zeta} \mathbf{M}_{\mathbf{X}\mathbf{y}}}{\mathbf{t}^{3}}$$
(A-22)

D. EQUILIBRIUM EQUATIONS

ľ

A consistent set of equilibrium equations and associated boundary conditions, compatible with the assumed kinematic and constituent stress-strain relations, will be developed by employing the Theorem of Minimum Potential Energy. The potential energy (π) is given by

$$\pi = \pi_{\rm s} - \pi_{\rm w} \tag{A-23}$$

where π_s is the strain energy and π_w is the work done by the boundary forces. Setting the first variation of the potential energy equal to zero will lead to the equilibrium conditions.

The strain energy functional is taken as

$$\pi_{s} = \frac{1}{2} \int \int \int \left\{ \sigma_{x} \epsilon_{x} + \sigma_{y} \epsilon_{y} + \tau_{xy} \gamma_{xy} \right\} d_{x} d_{y} d\zeta \qquad (A-24a)$$

and after putting Equations A-16 and A-18 into A-24a and integrating the resulting equation with respect to ζ the strain energy becomes, in terms of the displacements,

$$\pi_{s} = \frac{A}{2} \iint \left\{ \left(\frac{\partial u}{\partial x} + \frac{w}{R_{x}} \right)^{2} + 2\nu \left(\frac{\partial u}{\partial x} + \frac{w}{R_{x}} \right) \left(\frac{\partial v}{\partial y} + \frac{w}{R_{y}} \right) + \left(\frac{\partial v}{\partial y} + \frac{w}{R_{y}} \right)^{2} + \frac{(1 - \nu)}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{2} \right\} dxdy + \frac{D}{2} \iint \left\{ \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} + 2\nu \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} + \left(\frac{\partial^{2} w}{\partial y^{2}} \right)^{2} + 2(1 - \nu) \left(\frac{\partial^{2} w}{\partial x \partial y} \right)^{2} \right\} dxdy$$
(A-24b)

The work done by the boundary forces (π_w) is given by

$$\pi_{w} = \iint_{\zeta s} \overline{F} \cdot \overline{Z} \, ds d\zeta + \iint_{\zeta s} pw \, dx dy \qquad (A-25a)$$

where $\overline{\mathbf{F}}$ is the force vector

$$\overline{\mathbf{F}} = \mathbf{X}\mathbf{i}_{\mathbf{X}} + \mathbf{Y}\mathbf{i}_{\mathbf{y}} + \mathbf{Z}\mathbf{\hat{h}}$$
(A-25b)

and the components are

$$X = \sigma_{x} \cos (\ell, x) + \tau_{xy} \cos (\ell, y)$$

$$Y = \tau_{xy} \cos (\ell, x) + \sigma_{y} \cos (\ell, y)$$

$$Z = \tau_{x\zeta} \cos (\ell, x) + \tau_{y\zeta} \cos (\ell, y)$$
(A-25c)

In the above equations ℓ is the outward drawn normal to the boundary curve in the reference surface of the shell. The displacement vector \overline{Z} is

$$\overline{Z} = Ui_x + Vi_y + w\hat{n}$$
 (A-25d)

or (from Equations A-15b and A-15c with $\frac{\zeta}{R_x}$; $\frac{\zeta}{R_y}$ << 1)

$$\overline{Z} = \left(u - \zeta \frac{\partial w}{\partial x}\right) i_{x} + \left(v - \zeta \frac{\partial w}{\partial y}\right) i_{y} + w n \qquad (A-25e)$$

Substituting Equations A-25b, A-25c, and A-25e into Equation A-25a and integrating through the thickness results in

$$\pi_{\mathbf{w}} = \int_{\mathbf{s}} \left\{ \begin{bmatrix} \mathbf{N}_{\mathbf{x}} \cos(\ell, \mathbf{x}) + \mathbf{N}_{\mathbf{xy}} \cos(\ell, \mathbf{y}) \end{bmatrix} \mathbf{u} + \begin{bmatrix} \mathbf{N}_{\mathbf{xy}} \cos(\ell, \mathbf{x}) + \mathbf{N}_{\mathbf{y}} \cos(\ell, \mathbf{y}) \end{bmatrix} \mathbf{v} + \begin{bmatrix} \mathbf{Q}_{\mathbf{x}} \cos(\ell, \mathbf{x}) + \mathbf{Q}_{\mathbf{y}} \cos(\ell, \mathbf{y}) \end{bmatrix} \mathbf{w} - \begin{bmatrix} \mathbf{M}_{\mathbf{x}} \cos(\ell, \mathbf{x}) + \mathbf{M}_{\mathbf{xy}} \cos(\ell, \mathbf{y}) \end{bmatrix} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} - \begin{bmatrix} \mathbf{M}_{\mathbf{xy}} \cos(\ell, \mathbf{x}) + \mathbf{M}_{\mathbf{xy}} \cos(\ell, \mathbf{y}) \end{bmatrix} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} - \begin{bmatrix} \mathbf{M}_{\mathbf{xy}} \cos(\ell, \mathbf{x}) + \mathbf{M}_{\mathbf{xy}} \cos(\ell, \mathbf{x}) \end{bmatrix} + \mathbf{M}_{\mathbf{y}} \cos(\ell, \mathbf{y}) \end{bmatrix} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} \right\} d\mathbf{s} + \int \int \mathbf{p} \mathbf{w} d\mathbf{x} d\mathbf{y}$$
(A-26)

Before proceeding with the minimization process a portion of the work integral (π_w) is recast in order to display the "Kirchhoff free edge condition." To this end, consider the identity

$$\int \left\{ \left[Q_{x} \cos(\ell, x) + Q_{y} \cos(\ell, y) \right] w - \left[M_{x} \cos(\ell, x) + M_{xy} \cos(\ell, y) \right] \frac{dw}{dx} - \left[M_{xy} \cos(\ell, x) + M_{y} \cos(\ell, y) \right] \frac{\partial w}{\partial y} \right\} ds =$$

$$\int \left\{ \left[\left(Q_{x} + \frac{\partial M_{xy}}{\partial y} \right) \cos(\ell, x) + \left(Q_{y} + \frac{\partial M_{xy}}{\partial x} \right) \cos(\ell, y) \right] w - M_{x} \cos(\ell, x) \frac{\partial w}{\partial x} - M_{y} \cos(\ell, y) \frac{\partial w}{\partial y} \right] ds$$

$$- M_{x} \cos(\ell, x) \frac{\partial w}{\partial x} - M_{y} \cos(\ell, y) \frac{\partial w}{\partial y}$$

$$- \frac{\partial}{\partial x} (M_{xy}w) \cos(\ell, y) - \frac{\partial}{\partial y} (M_{xy}w) \cos(\ell, x) \right\} ds$$

$$(A-27a)$$

According to the sign convention shown in Figure 6 and the relations between dx, dy, and ds (Figure A-3), which are

$$\cos (\ell, x) = \frac{dy}{ds}$$

$$\cos (\ell, y) = -\frac{dx}{ds}$$
(A-27b)

then

$$\int \left\{ \frac{\partial}{\partial x} \left(M_{xy} w \right) \cos \left(\ell, y \right) + \frac{\partial}{\partial y} \left(M_{xy} w \right) \cos \left(\ell, x \right) \right\} ds =$$

$$= \int \left\{ -\frac{\partial}{\partial x} \left(\frac{M_{xy} w}{\partial x} + \frac{\partial}{\partial y} \left(M_{xy} w \right) \right\} dy = 0 \qquad (A-27c)$$

The vanishing of this integral follows from the evaluation of the contour integral over a rectangular path with the sign convention given in Figure 6.

Figure A-3. Direction Cosines Along a Contour in the x, y Plane

Making use of the identity, Equation A-27a, with the associated simplification given by Equation A-27c, in A-26, the work integral reduces to

$$\pi_{\mathbf{w}} = \int \left\{ \left[N_{\mathbf{x}} \cos(\ell, \mathbf{x}) + N_{\mathbf{xy}} \cos(\ell, \mathbf{y}) \right] \mathbf{u} + \left[N_{\mathbf{xy}} \cos(\ell, \mathbf{x}) + N_{\mathbf{y}} \cos(\ell, \mathbf{y}) \right] \mathbf{v} \right\}$$

+
$$\left[\left(\mathbf{Q}_{\mathbf{x}} + \frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{y}}\right)\cos(\mathbf{\ell}, \mathbf{x}) + \left(\mathbf{Q}_{\mathbf{y}} + \frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x}}\right)\cos(\mathbf{\ell}, \mathbf{y})\right]\mathbf{w}$$

$$- M_{x} \cos(\ell, x) \frac{\partial W}{\partial x} - M_{y} \cos(\ell, y) \frac{\partial W}{\partial y} ds + \iint pw dxdy \qquad (A-28)$$

Thus, the potential energy is composed of the difference between the strain energy, given by A-24b, and the work done by the boundary forces, given by A-28.

Minimization of the potential energy follows by application of the usual procedures in the Calculus of Variations. That is, the displacements u, v, and w are replaced by the one parameter family of comparison functions $u+\eta \delta u$, $v+\eta \delta v$, and $w+\eta \delta w$ in Equation A-23. The potential energy is then expressed as a function of the parameter η , and the necessary condition for η to assume a stationary value is $d\pi$ (m)

that $\frac{\mathrm{d}\pi}{\mathrm{d}\eta} = 0$ as η approaches zero.

Making the appropriate substitution in Equations A-24b and A-28 and performing the indicated operations results in

$$A \iint \left\{ \left(\frac{\partial u}{\partial x} + \frac{w}{R_{x}} \right) \left(\frac{\partial \delta u}{\partial x} + \frac{\delta w}{R_{x}} \right) + \nu \left(\frac{\partial u}{\partial x} + \frac{w}{R_{x}} \right) \left(\frac{\partial \delta v}{\partial y} + \frac{\delta w}{R_{y}} \right) \right. \\ \left. + \nu \left(\frac{\partial \delta u}{\partial x} + \frac{\delta w}{R_{x}} \right) \left(\frac{\partial v}{\partial y} + \frac{w}{R_{y}} \right) + \left(\frac{\partial v}{\partial y} + \frac{w}{R_{y}} \right) \left(\frac{\partial \delta v}{\partial y} + \frac{\delta w}{R_{y}} \right) \right]$$

$$+\frac{(1-\nu)}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\left(\frac{\partial \delta u}{\partial y}+\frac{\partial \delta v}{\delta x}\right)\right) dxdy + D \int \int \left\{\frac{\partial^{2} w}{\partial x^{2}} - \frac{\partial^{2} \delta w}{\partial x^{2}} + \nu \frac{\partial^{2} \delta w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} + \frac{\partial^{2} \delta w}{\partial y^{2}} + 2(1-\nu)\frac{\partial^{2} w}{\partial x dy} - \frac{\partial^{2} \delta w}{\partial x dy}\right) dxdy$$
$$-\int \left\{\left[\overline{N}_{x} \cos(\ell, x) + \overline{N}_{xy} \cos(\ell, y)\right] \delta u + \left[\overline{N}_{xy} \cos(\ell, x) + \overline{N}_{y} \cos(\ell, y)\right] \delta v + \left[\left(\overline{Q}_{x} + \frac{\partial \overline{M}_{xy}}{\partial y}\right) \cos(\ell, x) + \left(\overline{Q}_{y} + \frac{\partial \overline{M}_{xy}}{\partial x}\right) \cos(\ell, y)\right] \right\} dx$$
$$-\overline{M}_{x} \cos(\ell, x) \frac{\partial \delta w}{\partial x} - \overline{M}_{y} \cos(\ell, y) \frac{\partial \delta w}{\partial y} \right\} ds - \int \int p \delta w dxdy = 0 \qquad (A-29)$$

where the bar notation on the force and moment resultants denotes prescribed edge quantities. Recalling the force and moment resultant-displacement relations (Equations A-21), permits Equation A-29 to be put into the form

$$\begin{split} & \iint \Big\{ N_{X} \frac{\partial \delta u}{\partial x} + N_{y} \frac{\partial \delta v}{\partial y} + N_{Xy} \Big(\frac{\partial \delta u}{\partial y} + \frac{\partial \delta v}{\partial x} \Big) + \Big(\frac{N_{X}}{R_{X}} + \frac{N_{y}}{R_{y}} - p \Big) \cdot \delta w \\ & - M_{X} \frac{\partial^{2} \delta w}{\partial x^{2}} - M_{y} \frac{\partial^{2} \delta w}{\partial y^{2}} - 2 M_{Xy} \frac{\partial^{2} \delta w}{\partial x \partial y} \Big\} dxdy \\ & - \int_{S} \Big\{ \left[\overline{N}_{X} \cos(\ell, x) + \overline{N}_{Xy} \cos(\ell, y) \right] \delta u + \left[\overline{N}_{Xy} \cos(\ell, x) + \overline{N}_{y} \cos(\ell, y) \right] \delta v \\ & + \left[\Big(\overline{Q}_{X} + \frac{\partial \overline{M}_{Xy}}{\partial y} \Big) \cos(\ell, x) + \Big(\overline{Q}_{y} + \frac{\partial \overline{M}_{Xy}}{\partial x} \Big) \cos(\ell, y) \right] \delta w - \overline{M}_{X} \cos(\ell, x) \frac{\partial \delta w}{\partial x} \\ & - \overline{M}_{y} \cos(\ell, y) \frac{\partial \delta w}{\partial y} \Big\} ds = 0 \end{split}$$
 (A-30)

Employing the identity

ļ

ļ

ļ

Ì

ļ

$$C \frac{\partial B}{\partial \xi} = \frac{\partial CB}{\partial \xi} - B \frac{\partial C}{\partial \xi}$$
(A-31a)

and then making use of Green's theorem

$$\iint_{\mathbf{R}} \begin{bmatrix} \frac{\partial \mathbf{C}}{\partial \mathbf{x}} + \frac{\partial \mathbf{B}}{\partial \mathbf{y}} \end{bmatrix} d\mathbf{R} = \int_{\mathbf{S}} (\mathbf{C} d\mathbf{y} - \mathbf{B} d\mathbf{x})$$
(A-31b)

with the relations A-27b, Equation A-31b becomes

$$\int_{S} (Cdy-Bdx) = \int (C \cos(\ell, x) + B \cos(\ell, y)) ds \qquad (A-31c)$$

and the final form of Equation A-29 can be written as

$$\begin{split} & \int \int \left\{ -\delta u \left[\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} \right] - \delta v \left[\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} \right] \right. \\ & -\delta w \left[\frac{\partial^2 M_x}{\partial x^2} + 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} - \frac{N_x}{R_x} - \frac{N_y}{R_y} + p \right] \right\} dxdy \\ & + \int \left\{ \left[N_x \cos(\ell, x) + N_{xy} \cos(\ell, y) - \left(\overline{N}_x \cos(\ell, x) + \overline{N}_{xy} \cos(\ell, y) \right) \right] \delta u \right. \\ & + \left[N_{xy} \cos(\ell, x) + N_y \cos(\ell, y) - \overline{N}_{xy} \cos(\ell, x) + \overline{N}_y \cos(\ell, y) \right] \delta v \\ & - \left[\left(M_x - \overline{M}_x \right) \cos(\ell, x) \frac{\partial \delta w}{\partial x} + \left(M_y - \overline{M}_y \right) \cos(\ell, y) \frac{\partial \delta w}{\partial y} \right] \right. \\ & + \left[\left(\frac{\partial M_x}{\partial x} + \frac{2 \partial M_{xy}}{\partial y} - \overline{Q}_x - \frac{\partial \overline{M}_{xy}}{\partial y} \right) \cos(\ell, x) \right] \delta w \right\} ds = 0 \quad (A-32) \end{split}$$

Since the domain of integration is arbitrary, then satisfaction of Equation A-32 requires the vanishing of the integrands. The area integrals, lead to the field equations

$$\frac{\partial N_{x}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0$$
 (A-33a)

$$\frac{\partial \mathbf{N}}{\partial \mathbf{x}} + \frac{\partial \mathbf{N}}{\partial \mathbf{y}} = 0$$
 (A-33b)

$$\frac{\partial^2 M_x}{\partial x^2} + \frac{2 \partial^2 M_x y}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} - \frac{N_x}{R_x} - \frac{N_y}{R_y} + p = 0$$
 (A-33c)

and the contour integral stipulates the associated boundary conditions. A consistent set must include

Į.

İ

u or
$$N_x \cos(\ell, x) + N_{xy} \cos(\ell y)$$
 (A-34a)

v or
$$N_{xy} \cos(\ell, x) + N_y \cos(\ell y)$$
 (A-34b)

w or
$$\left(Q_{x} + \frac{\partial M_{xy}}{\partial y}\right) \cos(\ell x) + \left(Q_{y} + \frac{\partial M_{xy}}{\partial x}\right) \cos(\ell y)$$
 (A-34c)

$$\frac{\partial W}{\partial x}$$
 or M_{x} (A-34d)

$$\frac{\partial \mathbf{W}}{\partial \mathbf{y}}$$
 or $\mathbf{M}_{\mathbf{y}}$ (A-34e)

In addition, the arbitrariness of the boundaries leads to the field equations for the transverse shear resultants

$$Q_{x} = \frac{\partial M_{x}}{\partial x} + \frac{\partial M_{xy}}{\partial y}$$
(A-35a)

$$\mathbf{Q}_{\mathbf{y}} = \frac{\partial \mathbf{M}_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{M}_{\mathbf{y}}}{\partial \mathbf{y}}$$
(A-35b)

The formulation is now completed and the coupled linear system of fourteen partial differential equations for the fourteen unknowns, u, v, w, ϵ_x , ϵ_y , γ_{xy} , N_x , N_y , N_{xy} , M_x , M_y , M_x , M_y , M_{xy} , Q_x , and Q_y , consists of Equations A-16, A-21, A-33, and A-35, subject to the boundary conditions listed in Equations A-34.

E. COMPLEX DEFLECTION-STRESS FUNCTION

The governing equations for the stresses and deflections (which are fourteen in number) in a thin, shallow elliptic paraboloidal shell can be reduced to one fourthorder partial differential equation in terms of a complex deflection-stress function. To this end, one may define the auxiliary stress function, F, which is related to the force resultants by

$$N_{x} = \frac{\partial^{2} F}{\partial y^{2}}$$

$$N_{xy} = -\frac{\partial^{2} F}{\partial x \partial y}$$

$$N_{y} = \frac{\partial^{2} F}{\partial x^{2}}$$
(A-36)

and satisfies Equations A-33a and A-33b identically. Then, making use of the last three relations of Equations A-21 in A-33c in conjunction with Equation A-36 results in

$$D \nabla {}^{4}W + \nabla {}^{2}_{k} F = p(x, y)$$
(A-37)

where

$$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}$$
(A-38)

$$\nabla^{2}_{k} = \frac{1}{R_{x}} \frac{\partial^{2}}{\partial y^{2}} + \frac{1}{R_{y}} \frac{\partial^{2}}{\partial x^{2}}$$

$$\nabla^4 \mathbf{F} - (1 - \nu^2) \mathbf{A} \nabla^2_{\mathbf{k}} \mathbf{W} = 0$$
 (A-39)

The system of Equations A-37 and A-39 for the deflection and stress function will be reduced to a single fourth-order partial differential equation by introducing the complex function φ , defined by

$$\varphi = w + \frac{iF}{\left[(1-\nu^2)AD\right]^{1/2}}$$
(A-40)

where now $i = \sqrt{-1}$. Substituting from Equations A-40 into Equations A-37 and A-39 leads to the controlling equation for φ , which is

$$\nabla^{4} \varphi - i \delta^{2} \nabla^{2}_{k} \varphi = \frac{p(x, y)}{D}$$
 (A-41a)

with

$$\delta^2 = \frac{(1 - \nu^2)A}{D}$$
 (A-41b)

Thus, the solution to a problem involving a thin, shallow elliptic-paraboloidal shell reduces to the solution of Equation A-41a subject to the admissible boundary conditions (Equations A-34). With φ determined, all the field quantities can be evaluated by direct application of the interconnecting relations, Equations A-40, A-36, A-21 and A-35.

APPENDIX IV PROGRAM FLOW CHARTS

ŀ

				COMP	UTER PROG	RAMMING AND A	NALYS	IS PROGRAM WRIT	E - UP			
SECTION	I TITLE		141	HE OF C	(NZLN)	-2 61462	3 - F	LARED NO2	266 - C3442		ltct	
PRE			PAGE				Pre			PACE		•
-	GENERAL LAY OUT O	T PARTS I→E WINH	3	SUBROUTINE	FLAZN	1.7.4	X	SUBPLUTAVE	DAMEO # 11	62	SUBRAUTINE	JONEI #12
0	FLAGS FOR PR	PINT OUT MC(2)	46			<i>h</i>	×	SUBDIT-34 DE	SCRIPTION #13.1-13.1.	63	-	4
~	OPTIONS NOP	r(i.)	2		4	4	2	SUBDIT - #121	508034- #13.2	93	-	CKESN # 20
2	INPUT SYABOLS -	1/2 1/ 12/2 1.	×		4		5	508056- #1/23	508978 - X13.4	20	MADU # 30	FUNCE STRESSES + DEP
5	INPUT FORMAT	1 # Indez	6		2	*	54	308294-#135	50 BBC - #13.6	2	SUBRETUTA SUS	FISTDE #21
•		-	ř	11	FLADUL	۲. ۲	\$	SuBDDE - #18.7	5.81 × -7 3 2805	u	Ł	ч . ч
2	£	(Jank) O IT LAND	55	-	"		51	5080 HI - #13.	9 SUBDJK-#13.10	3	ž	4
4		CI # ILNARZ	8	=			ž	SUBDIM - MIRI	(1:E/A - \$ 1 9 805 1	ž	AFTW#31 CA	Icck L.S. Sol. Done FO
0	· mois- I Late	TAPE DESCRIPTION	3	-	APPYI	# (2	1.51 the - Hed Clans	11/21 2 - 2 J agos 6	ž		
2	Due existion	us for lenst sq.	1	"		1	54	SUBTU-#1015	1/8/14 - MA Q805	26		
1	DIMGRAM OF LEN	57 Spunces Banans	*	"	"	1.	Ŷ	SugD XY - #121	7 SUBD - #13.16	?		
3	AUPUT THE DESCRIPT	IPTON OF FLARE	24		typer	#)	\$	548D14-74131	4.11/4 - ALEBUZ 9	$\tilde{\sim}$		
7	SUBRITINES IN	NITELS, INDUT ALL	*	27 LITATIN	454 #9		5	513034 - #113	/۱۰	56		
	FL ::	1001 #17	36	Sugarthe	1 290 =	#/0	2	42# NEWW	PART III	z		
X	ANI TEN NEVA	4UT #16, 14PUT #1	3	1	rsqui	*19	59	SUBRENTENE	SUBCR # 13	6		
~	SUBRIUTINE TH	PUT #1	3	-	4	-	60	MALN #29	Print Strases + Der	22		
2	" "	ARE #1	39		-	"	ور	SUBAL UTENE	DASTDE # 21	83		
1	1,	" "	8		6457	* 14	وم	-	DOME 1 #12	55		
10	"	" "	5		15481	S/ #	63	1,	1 II	2		
å	•	11 11	\$	-	しまく	4	64	-	<i>b i</i> ,	સં		
5	2		2	-		-	5	-		ŝ		
12	W 14	E# 78	5	=	z		99	11	-	و و		
											Į	
DATE					8	MPUTER PROGRAMMING I	DEPART	BIS DIVISION Theory				Ĵ
- 19-340	(it it											

			+	1					
- 11	/		37	DAMEI	73		109		
	2		38	DANEI	74	APPx2	110		†
ľ	3		39	DAMEI	25	APPXI	///	FLSTDEr	1
	4		40	DOMEI	76	DASTDE	112	FLSTDE	1
	5		41	DYMEI	77	DM STDE	113	FLSTD6=	1
	6		42	DAMEI	75	Days7De	114	FLSTDE]
	7	· · · · · · · · · · · · · · · · · · ·	43	Deme!	79		ıК	FLSTDE]
	8		44	DAME!	80		116	FLSTDE]
	9		45	Dome 1	81		//7	FLSTDE	
	10		46	DANE!	82		//1	FLSTDE	E
	11	DUME	47	DEMEI	183		119	FLSTDE	2A
	12	Døme	41	DONE!	84		120	FLSTDE]]
	13	DAME	49	DOMEI	85	LEASQ	121	SUBDYE	2
	14	DOMEO	50	• ···· • • • • • • • • • • • • • • • •	86	45901	12	SUBDXY	- ng
	15	Dolum ED	51		97	LSQUI	123	SUBDZ	5
	16	Døme Døme	52		88	LSQUI	124	SUBDIA	-
8	17	Døme	53		89	• <u></u>	125	50 BD2A	Ē
. The	18		54		50	LSQUI	126	SUBD 3A	Т.,
100	19		55		91	LSWI	117		
BUTER PROGRAMMING & AWALYSIS DIVISION Administration department	20	SUBD/2	56		91		128		- -
	21	SUBD \$4	57		93	LSAB	19	1	1 1
NAL YS	22	SUBD56	57		94	(SABI	130		1
S DIA	23	SURD78	55		95	LSABI	131	?	
15 04	24	SUBD9A	60	FLARE	96	LEASQ	132	i	1
	28	SUBDBC	61	AKBK	97		173		1
	26	SUBDDE	62	FLARE	95	LSQU LANN, Ne, RHSLS(1+)	134	ter a ser an an an an an an an an an an an an an	
	127	SUBDFG	63	FLARE	99	LSQU	135	\$	
	25	SUBDHI	64	FLARE	100	an an an an an an an an an an an an an a	136		-
	29	JUBDJA	65	FLARE	101		137	4	
	30	SUBDLM	66	FLARE	102	an an an an an an an an an an an an an a	138	a or the community of the community	-
	31	SUBDNØ	5	FLARE	/03	ا د به داد الاستخداد العالم بين الور و محمد موجو ال معط	139		
	37	SURDPO	45		104	annan semi annan a sa annan a annan a na annan a sa bar	140	CHOSN	·
	22		10	F1 Arr			10.	Chrsw	-{
	27	Due SueDAS		#10 			14		-
37	17	Dines	/0	rl y in			- 72		-
	25	Die	+"		107		173	CRCSN	-
V	26	DOME!	12	FLMSN	100		12	1 2590	-
- HARLY GUP									

i

|

.

I

i I

| :

ł
			COMPUTER	PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	
SECTION TITLE	4 PTI	g n S	NGPT (I) I	=1, 72	
	Cat. 104.				
	NOPT(2)	v.A.e	RACTINE	PURPUSE	
·	2	0	FLARE FLAIM	Ellipse Optitu	
		-		CUBIC CURVE FIT	
	63	0	1000-65491	NORAFL	
4		-	4	GNIT LAND=1,3,4 (TEST RUN)	
. ł					
	5	0	LENSG-LSQU	NGK#91	
		-	-	MIT LMU = 2, 3, 5, 6, 8 (TEST RUN)	
		-	1 000 1	Party in rectaining A. A real Cold 1 and 50 Cal Car	111 TBOL +81
		\$ - \$ -		the second secon	ARD C
		ţ,		THIS REMINE IN PARTICIALY A RU COLMICAST SUMARY	Sal ution
		•			
	65	0	Dustie	DO NOT COMPUTE GAS GAS TONE OFC.	
			DASTDE	COMPUTE Gra. Juga. Toma at USING ENPUT to at 04 Cand 11 14	ILPUTI (NORAL)
· · · · ·					
· · · · · · · · · · · · · · · · · · ·					
DATE				COMPUTER PROGRAMMELING & MALYSIS DIVISION Administration deadwared	PAGE OF Trans
BMC-47 - Cute oc					

DATE	PHYSIC M SYMBUS	PROGRAM	PHYSICAL DESCRIPTION INFUTI	PHYSICAL SYMBOLS	PROGRAM SYMBOLS	PHYSICAL DESCRIPTION THAT	SECTI
	1.	LX	HICLOST A Start	6	EF	Flore Modulus of Elasticity	¥.
5	Ly	1.4		1	NU Ì	Porsson's Rota	
	to	To	Prome Thickness		PSI .	Internal Process	
1	VR.	RATIOX	Econoction - × Direction	t.	<u> </u>	Changelaristic Reduits	
	VRY	RATIOY	" - Y	te	TC	" Thickness	
	E	ED-ELAS	Dome Hodulus of Elosticity	σē	SIGC	" stress	
	A	AD	Dome Stretching Stiffness		NENIT		
	D	20	Dome Bending		NBAR		
	2	NUD-NU	Poissons Ratio	Ā	NB		
	NF	NF	Number of Flanc Rifference M	R	NBB		1
		NINIT		a	And	Flore Redus at 0 Stetten	
	4	DET	Angle Have tangent makes with a	t re	RPR()		
	Pai	Pr	Internal Pressure	I I	TEP		2
	4		Characteristic Radius	1 +'	Tay()		Pu
		5TCC	Thickmess	10	Pres		F
	<u> </u>	Tap .	STEESS	+ 4	100	Augle Haro Thught mile William	· 4
	4	121	Flane Phick mess at 0 station		ALTHA	Elips seure of akis	× I
	+ a	ALAT	Kodius at	+ \$	OETH	Fland Thick	8
		DEITED	Radius of Flore-Done Sunction	 An (sc.	Louth of Colundar Above	10
	Y.	XO	PART I ONLY IF NOPPIGATO DAST DE	t.	TO	Flary	~ č
	6x	DELTAX	A		TTOD		10
	64	DELTAY	<u>h</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u>	ŧŗ	₽F		6
	0:	THETAO	"Dome station at which Derived Quest!	4.44	AF		m :
8	000	DTHETO	Stutions	•' ' 	DF		N I
1	Opent	THLAST	tet	1	M	No. Diff. States in Cylinder	5
6		XD ()		L NF	NF	No. Flore LAT - STATION	4
IN I	 	() ()			CREPS	TASILON ADE CADOT ACOLINE	2
, The second sec		VOD (and a set the set	wo	OMPK		2
	·	THD()			B		5
8		THOP()		1			
	Au	AOLS				· · · · · · · · · · · · · · · · · · ·	22
	A	AILS(6		l akana kar		H
	B -	BOLS		3 4			PN
9	B	BJLS()			afra sum i		11
	<u>G</u> *	csn()			.	· · · · · · · · · · · · · · · · · · ·	Ħ
		<u></u>		- ;	+		1
1							
ļ	J	ļ					ž
	ļ			1.14	+ · · ·		- 5
		+	+		· · · · · · · · · · · · · · · · · · ·		¥
						and an analyzing and an an analyzing and a second strain and an analyzing and and a second second second second	
1		+					
		1					
		.	and the second second second second second second second second second second second second second second second				×.
		+					
					· ••••••••••••••••••••••••••••••••••••		1 4
		t	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l Nome		+		
		+					1
					·· [· ···		1
							1
\$	•	+	······································				1
		+			•••••••••		1
		+		· • •	- + -		1
		.	······································	· + · · · · · · · · · ·			1
		+					1
					-		1
	1	1			1		1
		1	and a second second second second second second second second second second second second second second second				

			1* 70/MI	FORMAT	FLARE)					
	SUBMITTED BY			PROB.			PAGE / C)F 2		
	EXT.	CHARGE NO					DATE			
	OPERATION NOTES	WORD 1	WORD 2	WORD 3	WORD 4	WORD 5	WORD 6	WORD 7	WORD 8	
		1 2 3 4 5 6 7 8 9 10	111211344291617718124202	21222324252627282930	0465 86 1696666 46 6688 70	6484 24 94 64 44 ENZALA	50 b 1 5 2 5 3 b 4 5 3 9 6 5 7 5 4 9 6 0	6162 63 64 65 66 7 6 86 9 7 0	7172374747976777	7980
-	Got 1- 72		╅╉┩╽╒╡			╈┿┿╎┼┿╫┥┿┪	╾╋╋╴╏╶╏╌┨╺╂╺╋╼╋			
2	FORMAT (7221) PRINT FLAGS		* (I) I=).	72						
3	FORMAT (72E1)		40(Z) J=73	×*/						
ŧ	FORMAT (72II) OPTION FLAGS		NOAT(I) II-	1,74						
2	EXEMAT (1515) INPUT INDICATOR									
۳	FORMAT (JEIO.O)	64	2							
7	FARMAT (15E5) JUPUT JUDITATOR									
80	FORMAT (TEVO.0)	7								
σ	FORMAT (1515)	3								
2	FURMAT (JE10.0)	24	Ł	P.						
=	FURMAT (ISIS)	*								
12		NEWER NEWE								
13	11 11	<u>5</u>								
=	" "	15								
15	" "	9								
9	KORMAT (7E10.0)	8	(1) 20	+((7))+			+ KPKT)			
17	FORMAT (1515)									
18	FORMAT (7E10.0)	(1)XOZ	206(2)-				* 20K (2)			_
61	EGEMAT (1515)	8								
20	FURMAT (TEIO.D)	1720	1 11/2/11	+(2)+			* TPA (2)			
2	FØRMAT (15IS)	6								
22	FURMAT (JE10.0)	\$2 5V						· · · · · · · · · · · · · · · · · · ·		
23	EDRMAT (1555)	0/								
2 t	FORMAT (TEro.0)	4	PS ID	Y	2	t ta	е У У	72690		
25		1700	72							-
26	F&RMAT (1515)									
27	EDEMAT (JE10.0)	44								H
28	FUXMAT (1525)	2								
29		N N								
30	11 11	/3								7
RAC E	-1-208 REV. 3/56								JUPUT #1-1	5

	SUBMITTED BY	<i>t</i>		PROB.			PAGE	2	
	EXT. (HARGE NO					DATE	5	
	OPERATION NOTES	WORD 1	WORD 2	WORD 3	WORD 4	WORD 5	WORD 6	WORD 7	WORD 8
		2 3 4 5 6 7 8 9 10	2212213441526272812820	21222324252627282930	040533334346345345383340	41424344 45 46 47 484 990	01 02 03 p4 39 36 0 7 5 00 9 60	16262636466966676869970	71/22/73/74/75/77/78/796
-	wice (2) At 1, Popaget (for the Co + april Just								
5	* (OIT O'0192) LUMUL XONET 93.03								
~	ULLO IN SUBCRALS			4					
=									
<u>م</u> ا	See Film CUMPT WATH #16								
م ا									
2									
••									
6									
2									
=									
12									
Ē									
2									
9									
1									
6									
20									
5							•		
22									
33									
15									
25									
26									
5									
28									
39									
8									
12	1-208 REV. 3/56								

	CIIDMITTED DV																2		Ľ		ļ				F
				2	9			•									1 2		5						
	511		WOR		; _	VORI	8	3	ORD	m	N N	RD 4	F	NOR	0	5	ORC	8		VOR	~	3	OR	8	1
_	OPERATION NOT		1 2 3 4 5 4	9 7 8 9	101112	1944161	17 181 22	0212223	2425262	1282930	+6662610	3906759065	3410 41	5-1-16-1-	40 × 2 × 9 × 3	626 1906	95€5	649625	6 0 b 1 b 2 6	364 6766	676869	1 2 2 2 2	374175	797	L.
- 1	16-1 /oj				H H	X	Ħ						╞									4			
2	FORMAT ALI PAS	DUT FLACS			М	(H	- H	4														_			
e	(IT IL (JI TI) ,	1. 1			ž	(E)	Г Ц	3,14	7												_				
=	LIDO (IIIL) LAMADS	TON FLAGS			МA	<u>e 17(s</u>	मं		<u>ь</u>																
50	FARMAT (JEJO.O)		ب × د			-			R		8	TEGX		A 7 2	¢У	-	Ą			6					
ø	" "		4		E	Ē			2	E		2										_		_	
	5 6		Ven			Ĩ		2	D Y D			d X		ean		2	,00			1.				_	
80			X			2 NHN	E		0.				-												
a	· · ·		<u>م</u>	-		и У			ĸ		6			ę			रू पू								
2	k 11		4	Ę		8																			
=	", " (DMSTDE	NoPTR9 70	0X			Ň			4																
: :	* (DMSTDE)		4			9		0		-															
: "			Ę			Ň	5	₩								ě	XQM								
2 =	4 1)ak	E)ex	2								1	đλ	Aan)	1							
2			<u>, 4' x</u>			,Ă X	2									ЪХ С	xan)	6						_	
<u> ۲</u>	le 4) <i>4</i> ,/	þ		Ň	(7)	¥								4' 4	(d M)	G					_		
2 1	-		020			e e	Ŧ	¥							\mathbf{x}	80	002	\mathbf{a}				_			_
8	s 4		1 (Z, O)			19,0	3	¥							Î	ŝ	(v 76	2	_			-			•
6	FARMAT (YEIS.0)	~	40	2			-	<u>म</u> ाऽ((\cdot)		4)ואד	5			ਸ਼	<u>(1)</u>	_	-		_				-
200	4		Ψī	4)54												보	E		_			-			-1
; ;		=	080	5				ज्ञिट (()		8	1572	5			854	<u>v</u>		_						
3		T.	3.5	11/1			J							 		871	<u><u> </u></u>		_			_			
1 5	1	\ xm	CSN(SUC	(7.			1) N S	<u>(</u>			S S	2		_						
3 7	1	0.)nso				Ŭ	shC	(7)		J	<u>r)</u>	<u> </u>	-		clsw	(Þ. 4	1	_		-	_		-	
25	11	VI					E									-	-					-	-+		
26	(1	a#	7					Ì				>							-				+		-1
27	1	20	CSM	- - -			<u>ل</u>) N S			U 	5 K (4		2		N N		3	-					+	T
28											•		-			+									
29										-		Ŧ	_	-+				-					+	+	
30					_								-			-			_						₽
AC E	E-1-208 REV. 3/56																								ᆀ

TER PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	Charler Rauge Ra	$\left 0 \frac{\beta_{2} \epsilon^{2} \gamma_{2}}{2 \epsilon^{2} \tau_{2}} \left(\left(-2^{2} \ell_{1} \nu_{1} \beta_{2} \right) \cdot x \cdot \epsilon_{2} \epsilon_{2} + \left(1 - \nu_{-} \beta_{2} \right) \cdot \gamma \gamma \cdot \epsilon_{2} \epsilon_{2} \right) \right $	$(1) \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \left((1-2^{1}+1) \cdot \frac{1}{2} \frac{1}{2} \right) \cdot X \cdot \rho_{m,0} + (1-2^{-1}) \frac{1}{2} \frac$	() ⁻ 0	$ q = \frac{1}{q_{1}^{2}} - \frac{1}{2}I_{1}(q)$	(1) 111 (1) (1) (1) (1- (2)) (1- (2)) (1- (2)) (1) - (2) (1) + (2)		0.10 (111-M1) (0120) + (039. (010.0.0.0.0.00.00.000.000.000.000.000.0	0 = (1 (2)/10-20, 01-20, 08+9 00, 05-00, 00, 00, 00, 00, 00, 00, 00, 00, 00,		e = (r	D : (n	10 - 0-	0 = (2	0 - 1-	21 = O
COMPUTE	ECTION TITLE							D) AC < 2 24 / (114 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -								
	SUBJECT SUBJECT	(and) + $\sum_{q=0}^{2} \frac{1}{2}$ (\overline{U}_{1} , and \overline{U}_{2} , and \overline{D}	and) + 2 = 3; (-Ui, and + Vij . and)	***	+ 5 = 1 (Qist coo + Grip an 0)>	(aime krin + at B . (Nin + at B . (Nin) + at B . (A	$(x,y) + \sum_{i=1}^{2} \frac{1}{i_{ij}} \left((h_{i1}y^{-h_{ij}x}) \frac{h_{ij}}{h_{ij}} + \frac{1}{h_{ij}} + \frac{h_{ij}}{h_{ij}} \right)$	+ [] + 100 -	$\left(\frac{1}{4^{2}\nu}\left(\frac{1}{4^{2}\nu}\left(\mu_{1,1},\left(\frac{1+c\mu_{1,2}}{2}\right)+\mu_{1,1}\gamma\right)\left(\frac{1-c\mu_{1,2}}{2}\right)+\mu_{1,1}\gamma\right)\left(\frac{1}{4^{2}\nu}\left(\frac{1}{4^{2}\nu}\right)+\mu_{1,1}\gamma\right)\left(\frac{1}{4^{2}\nu}\right)\right)\right)$							

 \bigcirc

1

.

SIS PROGRAM WRIT	$\frac{A_{1}}{L_{A}} \left(\overline{U}_{1}, \ a_{1}B + \overline{U}_{1}, \ u_{1} + \sum_{i=1}^{2} \overline{B}_{i} \cdot L_{i} \\ u_{1} + \sum_{i=1}^{2} \overline{B}_{i} \cdot L_{i} \\ u_{2} + u_{1} \cdot u_{2} + u_{1} \cdot u_{2} \\ u_{2} + u_{1} + u_{2} + u_{1} + u_{2} \\ u_{1} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} + u_{2} \\ u_{2} + u_$
RAMMING AND ANAL"	$\left\{\begin{array}{c} \left\{ \begin{array}{c} D_{0} \\ A_{0}(1, 1) \\ A_{0}$
COMPUTER PROG	101 101 101 101 101 101 101 101
6-7 IZ WHd	((1)), and ((1)), and
2 2 2	
SECTION TITL	AND AND AND AND AND AND AND AND AND AND

	uutet		107 - CONTAIN'S also, alas, d'a, 82, 6, 72		L + H KE
AM #RITE-UP	64		Idt - contrins tign (1,2,5,4)	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
PROGRAMMING AND ANALYSIS PROGR		BINARY TAPE OUTPUT	IBS - CONTAINS Z"Yn(1,2,34)		ADMINISTRATION DEPARTMENT
COMPUTER	PART I - FLARE #1		182 · CONTRINS 2'2 m (1, 2, 3, 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	section TITLE		[0] - Continus Zaja (1,2,24)		

	COMPUTE	I PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	
MCTION TITLE	SUBRAUTIN	INPUTI #17 PART IL, IL, IL, IL, IL, IL, IL, IL, IL, IL,	
CARD N.	0		
(: NI CEAD IN :)	T ITLE(I) I =1,12		
(T	N((I) I=1, 72		
	PC(I) 5-23,144		
(h	N\$PT(I) I=1, 72		
٤)	LX, LY, TD, RATIOX, RATIOY, ID, JD		
(9)	ED, AD, DD, J		
6	Noy, Nox, Noyr, Noxp, Nov, Nov, N		
6	NF, MUIT, 42		-
6	BI, R. T. JC, JC, To', ALR		
61	RINIT, BR	USED IN DOME STRESSES (DELKATIONS (DMST)E#21)	
<i>(u</i>	to, dx, dy	USED IN DOME STRESSES + DEFLECTIONS (DWSTDE #21) OPTION IF WORT (4)	40
(4)	0. , 00, But	USED IN DOME STRESSES + DEFLECTIONS (DASTDE#21)	
61	Xo (1) x=1, Nox []	X'S USED TO GENERATE BOUTTIONS IN LANSIG Q4	
(//	AP(1) 1 = 1 - 1 - 1 - 1 - 1 - 1 - 1	Y'S USED TO GELETATE EQUATIONS IN LAND IS Q.	
(51	A dren '1 = 1 (1) ^d X	X'S USED TO GENERATE EQUATIONS IN LAW = 10,12,14,18, (WAY, 94, M4, 4)	
(2)	E shen '12x (r)ah	Y' USED TO GENERATE GRUATIONS IN LANZ 9,", 13, 17; (Hoge, Qr, Mr, HA)	
(c)	Boli Ari, WOF		
16)	0° (1) x = 1, Wat	BS USED TU GENERATE EQUATIONS IN LAND = 1-8 , (UD, YD, WD, 4R, WR, MAD, 4R, MR)	
READ FROM CARDS IF NUMERIA-1	Aors, Mus(x), ID	GENERATED IN PART II SOLUTIONS TH LEAST SQUARES	
THPE IB6" "=0	Bous, Burs(2) 220	TUPUT TO CHECK DOME EQUATIONS	
OMEL KENDIN IL MONIDEL	12 (12 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		
DATE		COMPUTER PROGRAMMING & ANALYSIS DIVISION Administration department	PAGE 1-1 14
BPE-47 - 6/62 DC			

I

ł

		COMPUTER PROGRAMMING	AND ANALYSIS PROGRAM WRITE-UP	
SECTION TITLE	Par	er I - over Th	141	SUBJECT SUBJECT
Frøv A	CAR	D INPUT - READ BY SUBROUTINE IN	eor 💭 🕈	
		BIDCK	DESCRIPTION	
INPUT O	-	TETLE(1), E=1,,12	TITLE CARD-BCD	
FLARE @	2	Ne (I), I=1,,72	PRINT OUT OPTIONS . INTEGER BLANK OR !	
AKBK 3	-	Ne (5), J= 73,, 144		
FLAIN®	+	NOPT(I), I = 1,, 72	PROGRAM FLOW OPTIONS - INTEGER BLANK	
FLAINIG		THE REMAINENC CARDS ARE REA	ID IN UNDER OPTION - A CARD CONTAINING	
APPX2 (1)	<u></u>	THE OPTION NUMBER IN COLU	IMNS 1-5 NUST PRECEDE EACH INALT CARD OR	
APPXI (6)	No.	GROUP OF CARDS		
	- 1	EF, NU	E, Y . ELOADAG A.	
	4	P31	Ani-FLONTING PT.	
	3	Re, TE, 356-E	Ac, te, Ge - FLOATING PT.	
	4	NENET, NBAR	NEWET, NOAR - INTEGER.	
-	5	X8, X88	Ĩ, Ĩ - INTEGER	
.	e.	A, RPK(I), I=1,,NB	a, rpre(i), is 1,, N - FLOATENG PT.	
<u> </u>	~	ZPK(I), I=1,,NB	202 (1) 1=1,, M - FLONTENG PT.	
	10	TEP, TPK(I), I=1,,NB	The (o), The (i), i + 1,, N - FLOATNG PT.	
	0	P5D	W. FLOATZNG PT	-
J	0	A, PSID, ALPHA, BETA, TESC, TEED, HOD, EF	a, the a, & tt, se, to, tada to - FLOATENG PT.	
	:	AF, DF	&f, df - FloATENG PT.	
	12	M, NF	m, X4 - INTEGER	
	13	CREPS	& for submutine DCROUT - FLOATENG PT.	
	Ŧ	OMEP, OMPK(I), I=1,, NB	ape, wre(i) i = 1,, N	
	15	RETURN FROM SUBROUTINE	TO MAIN PROGRAM	
430 ¥				
DATE		COMPUTER PROF ADMIN	GRAMMING & AMALYSIS DIVISION Listration department	PAGE /6
BPE47 - 6/42 DC				

- --

I

ļ

l

I

E

l

ľ

l

ľ

Ì

ş			DUDEX	DOEX	
TE	#	PARTS I, I, I	= /	- 3	1104
	13.1	SUBDID (WIWL, ALXY, FX, FY, LXLY, IJ, INDEX)	ωIi	6023	1
	13.2	SUBD34 (UBIVB2, ALXY, FX, FY, LXLY, RXRY, IJ, INDEX)	J,i	F2j	
	13.3	SUBD56(VBIUBZ, ALXY, FX, FY, LXLY, RXRY, IJ, INDEX)	Vr.	Ūzj'	
	13.4	SUBDOS (NIYNLY, ALXY, FX, FY, LXLY, IJ, INDEX)	Nisiy	NZJX	
	13.5	SUBD9A (NIXWIY, ALXY, FX, FY, LXLY, IJ, INDEX)	Ninix	Nijy	
	13.6	SUBDBC (NIZXY, ALXY, FX, FY, LXLY, IJ, INDEX)	Atixy	NZJXY	
	13.7	SUBDDE (PHIXY, ALXY, FX, FY, LXLY, IJ, INDEX)	91×x	Quiy	Sc
	13.8	SUBDEC (QIXQ2Y, ALXY, EX, EY, LXLY, IJ, DADEX)	8122	8-54	BRAJ
	13.9	SUBDHI (QIYQIX, ALXY, FY, FY, LXLY, IJ, INDEX)	81-7	825×	DUE
	13.10	SUBDIK (PHIYX, ALXY, FX, FY, LXLY, II, INDEX)	Giry	92.jx	~ ~
	13.11	SUBDLM (QBARXY, ALXY, FX, FY, IXLY, IJ, INDFX)	BIXX	8214	18 J S
8	13.12	SURDND (QBARYX, ALXY, FX, FY, LXLY, IJ, INDEX)	8124	82j x	- 21
WUTER	13.13	SUBDAG (MIXM2Y, ALXY, FX, FY, LXLY, IJ, INDEX)	Mix	Mzjy	Bose
ROGRAM	13.14	SUBDRS (MIYMLX, ALXY, FX, FY, LXLY, IJ, INDEX)	ming	MILAX	7.60
NING &	13.15	SUBDTU (MIIJXY, ALXY, FX, FY, LXLY, 1J, INDEX)	Mikry	MLJXY	
MALYSIS	13.16	SUBDYW (MJXMJY, ALXY, FX, FY, LXLY, 15, INDEX)	MILX DY 495	M 1.59 94	1
L DIVISI	13.17	JUBDXY (MXXMYY, ALXY, FX, FY, LXLY, IJ, INDFX)	AM IXX DX QBL	MIJUDY	1
¥	13.18	SUBDZ (MYYMXX, ALXY, FY, FY, LXLY, IT, TNDFX)	AM 14 X Y DX 996	Mixy of QBIL	RETS
	13.19	SUBDIA (MYXMXY, ALXY, FX, FY, LXLY, IJ, INDEX)	MILIXYDY	M212492	H , 1
	13.20	SUBDLA (MXYMXY, ALXY, FX, FY, LXLY, IJ, DUDFX)	101,4 0g	MIJEDN 989	к, и
	13.21	SUBDAA (MXYMYX, ALXY, FX, FY, LXLY, IS, INDEX)	MILY DE	Mz jx Dy	
	/3.91	SUBDAA (MXYMYX, ALXY, FX, FY, LXLY, IS, INDEX) INDEX=1 INDEX=3 ALXY ALIX ALIY FX XX YY FY YY XX LXLY LX LY RXRY RX RY	403 A DY	1 1 2 jx by	
		LXLY LX LY RXRY RX RY			
				- 16	

b = $G(\mu_D \in V_1 i) = P(\mu_D \in V_1 i) = A(V_1 i)$

	COM	PUTER PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	Γ
SECTION TITLE	SUBD94 # 13.5 SUBDBC # 13.6	suelect	
1/12 ALAUTHE SUBDER (WX WY, ALX)	(x) / / / / X / / 2 / 2 / 2 / 2 / X / X /	TT = COL (ALXY(1)) · FA/LUV) TO = (q(INDEX,1)) · P(NDEX,1)) · D(NDEX,1) · P(NDEX,1) · BL (NDEX,1)	<u></u>
		73= par (q (woex, ~i) . Fy/(xiy) 74= 2. q (woex, ~i) . P(woex, ~i) - (q (woex, ~i)) - A(woex, ~i) "BL (woex, ~i)	
		75 = CO2 (4/100Ex,1), FY/L14) 76 = EXP(-P(10DEx,1), FY/L41Y) 76 = EXP(-P(10DEx+1,1), FY/L41Y)	
	RENEN	7)= ((4 (100 + +), 1) - F4 / L+++) 76 = Dai (4(100 + +), 1) - F4 / L+++) 79= (2 - G(100 + +++, 1)) - P(100 + +++, 1)) - AL(100 + +++, 1)) - Q(100 + +++, 1)) - Q(100 + +++, 1))	$\widehat{}$
		710= CO-(4(1006++1,1).Fr/144) 711= EAP(-P(1006++1,1).Fr/144)	<hr/>
		712 = (T213 = 74745) . T6+(T7 - 76 + 75. 77) . 71 N1 X W Y = T1.712 × 34	
SUBAGUTANE SUBGR (UIZX), ALXY, FX,	(x + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	TI= MXX(L), Par (ALXY (L)) Fr /LVLY).	
		73 + P(inDerin) - Q (wDErin) . R(iwDerin)	
		74= per (q(100 + x, x)), (FY/LXLY) 75 = q(100 + x, x, x) + P (100 + x, x, x)). BL (100 + x, x)	
		76- Co (Q/100ex, 1). Fr/1214)	
RET	VRV K	T)= ExP(-P(INDEX+),X])·FY/(XLY) T6 = P(INDEX+1,X])·AL(INDEX+1,X))-Q(INDEX+1,X])·BL(INDEX+1,X])	
		79= ani (q(100ex+1,x1). Fy/LOLY) This of inner 1. 1. A. (110ex1. 1.) , D(100ex+1,x1).B((100ex+1,x1))	
		$7\mu = cor((\rho(\rho \circ x + 1, n)) \cdot f(\lambda + 1)) \cdot f(\lambda + 1) \cdot f$	
DATE	.)	Concrete Advances and Antices	\$
EDPE-67 - 6/62 DC			3

	COMPUTER PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	
BÉCTION TITLE	JUSDIM # 13/1 Sustained # 13/1	
	108 B D + 111	Τ
LIVELAN ARD ILELAN STELLAN ROOM	$\begin{split} y_{F}y_{F}y_{F}(y_{F})_{T}(y_$	
5" 6 24 20 TIME SUBJUK (98 4 14 , ALXY, F) 9 9 4 4 4 + T + (12 · ((73+74-75) · 76 + 1 + (1(70-71)) + (112-1) + (2)	$\begin{cases} y(xy, JJ) = zap(A(xy(x_1) \cdot f_x/Lux)) \\ y = zap(-p(xpe_{x,x_1}) \cdot f_y/Lux) \\ y = exp(-p(xpe_{x,x_1}) \cdot (q(xpe_{x,x_1})^{-3} \cdot q(xupe_{x,x_1})^{+} (z-2) \cdot A(xy(x_1)^{+})) \\ y = p(pe_{x,x_1}) \cdot (q(xpe_{x,x_1})^{-3} \cdot q(xupe_{x,x_1})^{+} (z-2) \cdot A(xy(x_1)^{+})) \\ y = exp(-p(x) = exp(-p(x) = exy(x_1)) \cdot f_y/Lux) \cdot f_y = y(xy(x_1))^{*} + (z-2) \cdot A(xy(x_1))^{*} + (z-2) \cdot$	
DATE	COMPUTER PROGRAMMING & MALYSIS DIVISION ADMINISTRATION DEPARTMENT	4
EDME-41 - 6vitz DC		

COMPUTER PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP SUBJECT	$\begin{array}{c} Substructure (MIEJX', AIX', FX', FY', EX(LY), FX', LY) (AU) (AIX', FX', FY', FY', FY', FY', FY', FY', FY', FY$	$ = \sum_{k,k,k,k,k} \langle x, x, y, x, x, y, x, y,
ECTION TITLE	SugRoutine Sugaru (MI	SubRUTTUE SUBDUM(MT) $7/2 = CAL(ALX/L_1) \cdot fX$ $7/2 = CAL(ALX/L_1) \cdot fX$ $7/2 = CAL(ALX/L_1) \cdot (AL 7/2 = CAL(ALX/L_1) \cdot (AL)7/2 = CAR(-R(ADEX,L_1))7/2 = CAR(-R(ADEX,L_1))7/2 = CAR(-R(ADEX,L_1))7/2 = -Q(TADEX,L_1)7/2 = -Q(TADEX,L_1)$

	COMPUTER PROGRAMMIN	NG AND ANALYSIS PROGRAM WRITE-UP	
SECTION TITLE	5480×4 # 13.17 54802 # 13.4	SUBJECT	
Kwxxw/Kx0805 Inthopology	(x3002' [1' K1x' KJ' XJ' K1V'		
71 ALXY(1) - QUL, (ALXY(1)) FT /L 72 - EXP(- P(INDEX,1)) . Q(INDEX). 73 - 1 . D(INDEX,1)) . Q(INDEX). 74 - ALXY(1)) - U. (P(INDEX,1)) 75 = EXP(- P(INDEX,1)) 75 = EXP(- P(INDEX,1)) . FY/LN 71 = - T 3 - BL (INDEX,1)) 71 = - T 3 - BL (INDEX,1)) 71 = (ALXY(1)) . F. /L.U	(1)	7 = ExP(-P(iuDEx+i, j), Fy(Lxy), puin(Q(iuDEx+i, x)) 79 = -2. J. P(iuDEx+i, x)), Q(iuDEx+i, x)) 70 = AL(iuDEx+i, x)) 711 = BL(iuDEx+1, x)) 712 = BP(-P(iuDEx+i, x)), Fy(Luy), Cura(Q(iuDEx+i, x)), 713 = ExP(-P(iuDEx+i, x)), Fy(Luy), Cura(Q(iuDEx+i, x)), 715 - 79, 71 715 - 79, 71 (Return) 77 = AL(iuDEX+1, x)) 77 = AL(iuDEX+1, x)), P(iuDEX+1, x)), P(iuDEX+1, x)	FY/Lacr) FY/Lacr) F1.713]+313.(T14+7-15)) F11.713]+313.(T14+7-15))
115 CONTRATION (177 / 144) 73 = ERP(-P(14DEX,X)) . (9(14DEX, A) 73 = - 9(14DEX,X)) . (9(14DEX, A) 75 = BL(14DEX,X)) . (3.9(14DEX, A) 75 = ERP(-P(14DEX,X)) . (9(14DEX,A) 75 = EXP(-P(14DEX,A)) . (9(14DEX,A)) 75 = - 8(14DEX+1,A)) . (9(14DEX+1)))	710=-P(INDEX+1, 1) (3.41, 200-(4(INDEX+1, 1)) 711- BL(INDEX+1, 1)) · FY(LXLY) · COD-(4(INDEX+1, 1)) 7120 EXP(-P(INDEX+1, 1)) · FY(LXLY) · COD-(4(INDEX+1, 1)) MYYMXY = T1 · (T2 · (T3 + T4 + T5)) · T (-13) + T12 · (T10 · 79 - 76. T1)) · X (-23) RETURN	 xj)·fy/Luty) + T 7 (78 T 9 + 740. T^{II})
DATE BREAT - Livie of	COMPUTER PR	OGRAMMING & MALVEIS DIVISION INISTRATION DEPARTMENT	PARE9 55

COMPUTER PROG	TAMMING AND ANALYSIS PROGRAM WRITE-UP	
BECTION TITLE SUBDA		subject .
SUBRAUTIVE SUBBAR (MXYNYX, ALXY, FX, FY, LXLY, IJ, TUDEX)	$y_{12} = (-3) \cdot AL \times A(x_1) \cdot P(x_1) \cdot P(x_1) \cdot P(x_1) \cdot P(x_1) \cdot P(x_1) \cdot P(x_1) \cdot P(x_2) $	-q(INDEX,1)) BL(INDEX,1))).q(INDEX,1)) BL(INDEX,1)) DEX+1,1) +(P(INDEX+1,1)) BL(INDEX+1,1) BL(INDEX+1,1) 3.T11) 5.T11)
		2 445
DATE	UTER PROGRAMMING & ANALYSIS DIVISION Administration department	50BD11 57
EM-41 - 6/k2 00		

e'.'

		COMPUTER PROGRAMMING AND ANALYSIS PROGRAM WRITE-UP	
SECTION TITLE	PART I DO	DOME STREESES + DEFLECTIONS - MAIN # +1 Subject	
HAL BI HALTAN BI HALTAN BI HALTAN HALLA DANE DAN	, _ I85, I84, I81) / 		
DATE		COMPUTER PROGRAMMING & AMALYSIS DIVISION Administration Deframment	1.23 -1 60
BPE-47 - 6/12 DC			

	sueject	$\frac{(\chi, \chi, L', J, J, J)}{(\chi, \chi)} \underbrace{ \begin{array}{c} \mathcal{F}_{1,1}(\chi) \\ \mathcal{F}_{2,1}(\chi) \\ \mathcal{F}_$	$T, 3) \left(J = 1, 7 \right) \rightarrow Ny = 1, fact (5, 15) \rightarrow 101$	1,3) [1:1,20] Aly 2, 1 (Art (5, 6)) 400	7-; 3 b) Mx · Do. 1c / c. te · tc ((+ t)	رابان المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا	$(1,1)$ $M_{1}^{2} \mathcal{H}_{1}^{2}(\xi, (\xi, -\xi, -\xi, -\xi, -\xi, -\xi, -\xi, -\xi, -\xi, -\xi, -$	() - (1) - ((1)	1) (LD= E- (E, FEL) / A, G. 9-1,30 (3, 500, (3, 500, KH12) 60 - 500 19450	PARE NOVE 1-2 63
ING AND ANALYSIS PROGRAM WRITE-UP	I'I LUND GENNELNOS I'K (1	1001 - 10	(1 x x XX X ETN : 24) NEEDO 21 NJ (27) YOUN . 5708 - 23 (1 x x XX X ETN : 24) NEEDO 21 NJ (20) (20) (20) (20) (20) (20) (20) (20)	$\frac{3605}{2_{1}} = \frac{3005}{2015 \cdot Maury/_{13}} = \frac{7415}{2_{1} \cdot \mathcal{E}_{1} + 4405 \cdot B315(3)/_{13}} + \frac{7405}{2_{1} \cdot \mathcal{E}_{1} + 4005 \cdot B315(3)/_{13}} + \frac{7405}{$	2- 3- 3- 3- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	$\frac{1}{2} = \frac{1}{2} e_{12} \cdot \frac{1}{2} e_{$	5 Bols. Mary/Ly - Call Subst (Hus,), 5 5, + 8225(y). Aus /2 + 82 5 5 5. + 8225(y). Aus /2 + 82	22- Buis heary/ (1) call sub BC (100)) 1, 1) 51- ξ1+ BT 15(4) · Aus/Ly + (4) 50.1 Pus	Bus: heary high - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	9015. W20.24 (all SUBDIE (MS, ,) , , , , , , , , , , , , , , , , ,	PROGRAMMING & ARALYSIS DIVISION Ministration deartheat
COMPUTER PROGRAMM	SUBROUTINE DOMEI(XX, YY, J4)	(1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	(2,1 =) ((1,1,1,1) ((1,1,1) (<u>عود ۲</u> ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	عدد حداث (الم الم الم الم الم الم الم الم الم الم	(all subors (ANS, ALTX, XY, YY, LY, L), i, i, 1 E, "E(+ALLS(1), ANS, /Lx, #BD) 3000	call suppru(Aus,) , , , , , , , , , , , , , , , , , ,	2 (1) 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Call Suppe(ms, 1, 1, 1, 1) Z= = Z (1, 1, 1, 1, 1) Z= = Z (1, 1, 1, 1, 1, 1) Z= = Z (2, 1, 1, 1, 1, 1) Z= Z (2, 1, 1, 1, 1) Z= Z (2, 1, 1, 1, 1, 1) Z= Z (2, 1,	(1'x', ', ', ', ', ', ', ', ', ', ', ', ', '	COMPUTER I
	SECTION TITLE	300 30M1= AOL 5 . WION /.	Nug 3.01 - 25, = Aols · Mog //x	x1/600/1.510/ = '2 K 100	MA 2013 - 1015 - 1015 - 1015 / LA	1304 E = Aurs - Miod / La	The second secon		14		DATE BYEAT - Lyle DC

.

l

İ

