94 research outputs found

    Dyson instability for 2D nonlinear O(N) sigma models

    Full text link
    For lattice models with compact field integration (nonlinear sigma models over compact manifolds and gauge theories with compact groups) and satisfying some discrete symmetry, the change of sign of the bare coupling g_0^2 at zero results in a mere discontinuity in the average energy rather than the catastrophic instability occurring in theories with integration over arbitrarily large fields. This indicates that the large order of perturbative series and the non-perturbative contributions should have unexpected features. Using the large-N limit of 2-dimensional nonlinear O(N) sigma model, we discuss the complex singularities of the average energy for complex 't Hooft coupling lambda= g_0^2N. A striking difference with the usual situation is the absence of cut along the negative real axis. We show that the zeros of the partition function can only be inside a clover shape region of the complex lambda plane. We calculate the density of states and use the result to verify numerically the statement about the zeros. We propose dispersive representations of the derivatives of the average energy for an approximate expression of the discontinuity. The discontinuity is purely non-perturbative and contributions at small negative coupling in one dispersive representation are essential to guarantee that the derivatives become exponentially small when lambda -> 0^+ We discuss the implications for gauge theories.Comment: 10 pages, 10 figures uses revte

    Asymptotically Universal Crossover in Perturbation Theory with a Field Cutoff

    Full text link
    We discuss the crossover between the small and large field cutoff (denoted x_{max}) limits of the perturbative coefficients for a simple integral and the anharmonic oscillator. We show that in the limit where the order k of the perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the crossover region, a_k(x_{max}) is proportional to the integral from -infinity to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are determined empirically and compared with exact (for the integral) and approximate (for the anharmonic oscillator) calculations. We discuss how this approach could be relevant for the question of interpolation between renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304

    The non-perturbative part of the plaquette in quenched QCD

    Get PDF
    We define the non-perturbative part of a quantity as the difference between its numerical value and the perturbative series truncated by dropping the order of minimal contribution and the higher orders. For the anharmonic oscillator, the double-well potential and the single plaquette gauge theory, the non-perturbative part can be parametrized as A (lambda)^B exp{-C/lambda} and the coefficients can be calculated analytically. For lattice QCD in the quenched approximation, the perturbative series for the average plaquette is dominated at low order by a singularity in the complex coupling plane and the asymptotic behavior can only be reached by using extrapolations of the existing series. We discuss two extrapolations that provide a consistent description of the series up to order 20-25. These extrapolations favor the idea that the non-perturbative part scales like (a/r_0)^4 with a/r_0 defined with the force method. We discuss the large uncertainties associated with this statement. We propose a parametrization of ln((a/r_0)) as the two-loop universal terms plus a constant and exponential corrections. These corrections are consistent with a_{1-loop}^2 and play an important role when beta<6. We briefly discuss the possibility of calculating them semi-classically at large beta.Comment: 13 pages, 16 figures, uses revtex, contains a new section with the uncertainties on the extrapolations, refs. adde

    Improved Conformal Mapping of the Borel Plane

    Full text link
    The conformal mapping of the Borel plane can be utilized for the analytic continuation of the Borel transform to the entire positive real semi-axis and is thus helpful in the resummation of divergent perturbation series in quantum field theory. We observe that the rate of convergence can be improved by the application of Pad\'{e} approximants to the Borel transform expressed as a function of the conformal variable, i.e. by a combination of the analytic continuation via conformal mapping and a subsequent numerical approximation by rational approximants. The method is primarily useful in those cases where the leading (but not sub-leading) large-order asymptotics of the perturbative coefficients are known.Comment: 6 pages, LaTeX, 2 tables; certain numerical examples adde

    Pierre Lamalattie, L’Art des interstices

    Get PDF
    A l’instar d’une écriture de la contemporanéité tendant à son épuisement, tant dans l’usage du verbe que dans la description d’un rapport au monde blasé et blessé – essoufflement des possibilités offertes par une capitalisation des existences humaines, emprisonnées dans un mimétisme en crise et une superficialité déroutante – Pierre Lamalattie, l’autre Michel Houellebecq, nous livre dans ce récit mordant, monté comme un roman d’apprentissage (le narrateur essaye d’agir au moment crucial de l’..

    Experimental observation of two-dimensional fluctuation magnetization in the vicinity of T_c for low values of the magnetic field in deoxygenated YBa_2Cu_3O_{7-x}

    Full text link
    We measured isofield magnetization curves as a function of temperature in two single crystal of deoxygenated YBaCuO with T_c = 52 and 41.5 K. Isofield MvsT were obtained for fields running from 0.05 to 4 kOe. The reversible region of the magnetization curves was analyzed in terms of a scaling proposed by Prange, but searching for the best exponent Ď…\upsilon. The scaling analysis carried out for each data sample set with Ď…\upsilon=0.669, which corresponds to the 3D-xy exponent, did not produced a collapsing of curves when applied to MvsT curves data obtained for the lowest fields. The resulting analysis for the Y123 crystal with T_c = 41.5 K, shows that lower field curves collapse over the entire reversible region following the Prange's scaling with Ď…\upsilon=1, suggesting a two-dimensional behavior. It is shown that the same data obeying the Prange's scaling with Ď…\upsilon=1 for crystal with T_c = 41.5 K, as well low field data for crystal with TcT_c = 52 K, obey the known two-dimensional scaling law obtained in the lowest-Landau-level approximation.Comment: 4 pages, 3 figure

    Emergence of hexatic and long-range herringbone order in two-dimensional smectic liquid crystals : A Monte Carlo study

    Full text link
    Using a high resolution Monte Carlo simulation technique based on multi-histogram method and cluster-algorithm, we have investigated critical properties of a coupled XY model, consists of a six-fold symmetric hexatic and a three-fold symmetric herringbone field, in two dimensions. The simulation results demonstrate a series of novel continues transitions, in which both long-range hexatic and herringbone orderings are established simultaneously. It is found that the specific-heat anomaly exponents for some regions in coupling constants space are in excellent agreement with the experimentally measured exponents extracted from heat-capacity data near the smecticA-hexaticB transition of two-layer free standing film

    Fisher's zeros as boundary of renormalization group flows in complex coupling spaces

    Full text link
    We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.Comment: 4 pages, 3 fig

    Instantons in Quantum Mechanics and Resurgent Expansions

    Get PDF
    Certain quantum mechanical potentials give rise to a vanishing perturbation series for at least one energy level (which as we here assume is the ground state), but the true ground-state energy is positive. We show here that in a typical case, the eigenvalue may be expressed in terms of a generalized perturbative expansion (resurgent expansion). Modified Bohr-Sommerfeld quantization conditions lead to generalized perturbative expansions which may be expressed in terms of nonanalytic factors of the form exp(-a/g), where a > 0 is the instanton action, and power series in the coupling g, as well as logarithmic factors. The ground-state energy, for the specific Hamiltonians, is shown to be dominated by instanton effects, and we provide numerical evidence for the validity of the related conjectures.Comment: 12 pages, LaTeX; further typographical errors correcte

    Generating Bounds for the Ground State Energy of the Infinite Quantum Lens Potential

    Full text link
    Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev. Lett.{\bf 55}, 931 (1985); ibid, {\bf 60}, 253 (1988b)), generates converging lower and upper bounds to a specific discrete state energy, once the signature property of the associated wavefunction is known. This method is particularly effective for multidimensional, bosonic ground state problems, since the corresponding wavefunction must be of uniform signature, and can be taken to be positive. Despite this, the vast majority of problems studied have been on unbounded domains. The important problem of an electron in an infinite quantum lens potential defines a challenging extension of EMM to systems defined on a compact domain. We investigate this here, and introduce novel modifications to the conventional EMM formalism that facilitate its adaptability to the required boundary conditions.Comment: Submitted to J. Phys.
    • …
    corecore