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Abstract

Certain quantum mechanical potentials give rise to a vanishing perturbation series for at least one energy level (which as we
here assume is the ground state), but the true ground-state energy is positive. We show here that in a typical case, the eigenvalu
may be expressed in terms of a generalized perturbative expansion (resurgent expansion). Modified Bohr—Sommerfeld quan-
tization conditions lead to generalized perturbative expansions which may be expressed in terms of nonanalytic factors of the
form exp(—a/g), wherea > 0 is the instanton action, and power series in the couplinas well as logarithmic factors. The
ground-state energy, for the specific Haonilians, is shown to be dominated by mston effects, and we provide numerical
evidence for the validity of the related conjectures.

0 2004 Elsevier B.\VOpen access under CC BY license,

PACS 11.15.Bt; 11.10.Jj
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1. Introduction of one-dimensional quantum mechanical model prob-
lems, which give rise to divergent perturbation series
A number of intriguing and rather subtle issues and allow for the presence of instanton effedfs Of
are connected with simple Rayleigh—Schrédinger per- particular interest is the case of the symmetric double-
turbation theory when it is applied to certain classes Well potential(2,3]
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the Hamiltonian being

g = — d 2+x7( )
dw = qu dwl&, q)-

There are several points to note: (i) The perturbation
series can be shown to be non-Borel summ§d|8]

for positive g. (ii) The parity operationy — 1 — g
leaves \_/dw(g,q/\/§) invariant, and eigenfunctions
are classified according to a principal quantum num-
ber N and the parity eigenvalue = +. States with
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Here, we are concerned with a modification of the
double-well problem,

i} 1 1
Vep(g, q) = éqz(l—\/?q)er\/?q ~ 5 (2

the Hamiltonian beingZep = — 3 (d/dg)?+ Vep(g. q).

The potential\_/pp(g,q) also contains a linear sym-
metry-breaking term. There are the following points
to note with regard td/gp(g, ¢): (i) parity is not con-
served, and there is no degeneracy of the spectrum on

the same principal quantum number but opposite par- the level of the perturbative expansion. (ii) The per-
ity are described by the same perturbative expan- turbation series for the ground state vanishes identi-

sion. (iii) The energy splitting between states of op-
posite parity is described by nonanalytic factors of
the form exjp—1/(6g)]. In general, quantum tunnel-
ing may generate additional contributions to eigenval-
ues of order exp-consyg), which have to be added
to the perturbative expansion (for a review and more
detail about barrier penetration in the semi-classical
limit see, for example[4]). Dominant contributions
to the Euclidean path integrate generated by classi-

cally to all orders in the coupling [17]. (iii) The true
ground-state energy is positive; [h7] it was shown
that it fulfills 0 < Eg < Cexp(—D/g), whereC and

D are positive constants. Here, we present a resurgent
expansion which naturally leads to a generalization
of perturbation theory valid for problematic potentials
such asVep(g, ¢). Furthermore, we conjecture that a
complete description of the energy eigenvalues can be
obtained via a generalized Bohr—-Sommerfeld quan-

cal configurations (trajectories) that describe quantum tization condition which allows for the presence of
mechanical tunneling among the two degenerate min- nonanalytic contributions of order expl/(3g)] for

ima; their Euclidean action remains finite in the limit
of large positive and large negative imaginary time (for
a review seéb]).

Thus, the determination of eigenvalues starting
from their expansion for smay is a non-trivial prob-
lem. Conjecture$6—10] have been discussed in the
literature which give a systematic procedure to calcu-
late eigenvalues, for finitg, from expansions which
are shown to contain powers of the quantitiedn g
and exg—consfg), i.e., resurgeritL1,12]expansions.
Moreover, generalized Bohr—-Sommerfeld formulae
(see, e.0.[13, Eq. (2)) can be extracted by suitable
transformations from the corresponding WKB expan-
sions. (The approximate quantization conditions may
also be derived from an exact evaluation of the path in-
tegral in the limit of a vanishing instanton interaction,
by taking into account an arbitrary number of tunnel-
ings between the minima of the potent[ad—16])
Note that the relation to the WKB expansion is not
completely trivial. Indeed, the perturbative expansion
corresponds (from the point of view of a semi-classical
approximation) to a situation with confluent singular-
ities and thus, for example, the WKB expressions for
barrier penetration are not uniform when the energy
goes to zero.

the ground state and of order ¢x/(6g)] for ex-
cited states, and we present numerical evidence for the
validity of this conjecture. We thereby attempt to pro-
vide a complete description of the eigenvalues of the
Fokker—Planck potential by a generalized perturbation
series involving instanton contributions. More general
cases are treated jb5,16]

We are not concerned here with supersymmet-
ric quantum mechanics. In this context, the Fokker—
Planck Hamiltonian has received some attention in the
past two decades (see, €[d8,19). Instead, we rather
attempt to find the suitable generalization of perturba-
tion theory that gives us an exact generalized secu-
lar equation for the energy eigenvalues which in turn
yields a generalization of perturbation theory suitable
to the problem at hand. We will not satisfy ourselves
with an approximate solution of the problem but we
attempt to find complete expressions for the energy
eigenvalues in terms of resurgent expansions.

2. Fokker—Planck Hamiltonian

The particularly interesting Hamiltoniavep(g, ¢)
has been studied if17]. The spectra of the Hamil-
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tonians Hygy and Hep are invariant under the scale
transformationy — ¢/./g and can therefore be writ-
ten alternatively as

d\? 1

Hgw = —§<£> + EVdW(CI), (3a)

1

Vaw(q) = 5612(1 - )% (3b)
d\? 1

Hpp= —%<£> + gVFP(CI), (3¢)

1
Vep(q) = Vaw(q) + g<q - §>~ (3d)

This is a representation which illustrates tigatakes
the formal role of#i and that the linear symmetry-
breaking term inVep(g) in fact represents an explicit
correction to the potential of relative ordgr

For the double-well potential, the following two
functions enter into the generalized Bohr—Sommerfeld
quantization formul#§9,13,14]

1
Bow(E,g) =E + g(3E2 + Z)

25

+ g2<35E3 + ZE) +0(¢%, (4a)

1 19
Agw(E, g) = @ + g(l?E2 + 1—2)

187
+ g2(227E3 + TE) +0(g%).
(4b)

The guantization condition and the resurgent expan-
sion for the eigenvalues read:

1 1 2 Baw(E,g)
—T( = — Baw(E, -z
V2 (2 an g))( 8)
A E
x exp[—w} — i, (5)
and
o0
Ecn()=Y Eyg
1=0
oo 2 Nn e—l/Gg n
2(5) (=)
el 8 g
n—1 2 k 00
XZ{m(——)} > ennng. (6)
k=0 §/) 120
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Here, theE}(\% are perturbative coefficien{§], and
the expression forE. ny(g) follows naturally from
an expansion of(5) in powers of g, In(g), and
expg—1/(6g)]. The indexn characterizes the order of
the instanton contributiorm(= 1 is a one-instanton,
etc.). The conjecturgs) has been verified numerically
to high accuracyl13].

Insight can be gained into the problem by consider-
ing the logarithmic derivativé (q) = —gv¥'(¢) /¥ (q),
which for a general potentia¥’ satisfies the Riccati
equation

¢5'(q) — S2(q) + 2V (q) — 2gE =0. 7

This equation formally allows for solution with = 0
(and implies a vanishing perturbation series), if the po-
tential V (¢) has the following structure:

1
V(g) = E[UZ(‘” —gU'(@)]. (8)

Indeed, a formal solution off¢ = 0 in this case is
given by

q
¢(q)=exp[—§/dq’U(q’)] )
The HamiltonianVep is of this structure, witlU (¢) =
Urp(qg) = q(1 — ¢). This fact leads to the peculiar
properties ofVgp, and indeed the Hamiltonians dis-
cussed in[17] belong to this class. The intriguing
guestions raised by the remarks made[iA] find
a natural explanation in terms of generalized Bohr—
Sommerfeld quantization conditions, and resurgent
expansions.

Before discussing/rp, we first make a slight detour
and consider the special casg (¢) = ¢ + ¢. The
potential%Uﬁ(g) has no degenerate minima, and thus
there are no instantons to consider. Indeed, in the case
of the HamiltonianHy = —(g/2)(d/dq)? + [Uf(q) —
gU| (9)1/(2¢) (we follow the notation of17]), the ex-
pression(9) may be utilized for the construction of a
normalizable eigenfunction of the Hamiltonian which
readse) (q) = expl—(¢2/2 + ¢q*/4)/g] and has the
eigenvaluet = 0.

In the case of the potentidlrp(g) =g (1 — q), the
issue is more complicated because the wave function

B 1 q3 qZ
d(q) = eXp|:§ (3 - ?)] (10)
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is not normalizable, and thus is not an eigenfunc-
tion. An analogy of the Riccati equatidid) with the
Fokker—Planck equation suggests that the dase0

be identified with an equilibrium probability distri-
bution. Therefore, the non-normalizable wave func-
tion (10) may naturally be identified with a “pseudo-
equilibrium” distribution.

3. Instanton action

The Euclidean instanton action for the ground state
of the Fokker—Planck potential is given [8;9]

1
a=2/®Umm=§, (11)
0

and it is this quantity which determines the lead-
ing contribution to the ground-state energy of order
exp—1/(3g)]. We conjecture here the following gen-
eralized quantization condition for the eigenvalues of
the Hamiltonian(3c)

1
I't(—Brp(E, 8))I'(1 — Brp(E, 8))
( Z)ZBFF’(E'g)exp(—AFp(E,g))
+ - - @ =
g 2w

This condition is different from what would be ob-
tained if one were to consider perturbation theory
alone. Indeed, the perturbative quantization condition
reads

=0. (12

Brp(E,g) =N (13)

with integerN > 0. The functionsBgp and Arp deter-
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969969 , 255255 , 111111 ,\ &
+ E E E“|g
4 2 8
22309287 , 33948915
+ E"+ E
4 8
| 3556558 5 425425\ ¢
4 16 )¢
2151252675 557732175 4
+ ES + E
16 4
379257879
+—g 4+415701(E2)g +0(gb),
(14a)
ArpP(E, 8)
5
= 17E% +
( Qg
+ (227153 + E)g
L (47431, 11485E2+110 3
12 12 72 )¢
317629 5 64535 5 4109 )\ ,
+ E E g
2 2
(26145967 7.6, 25643695 ,
+
24
| 4565723 ,  82825)
30 48 )%
| (812725953 ; | 280162805
20 8
1057433447 , 20613005\ ¢ ;
E E .
T 120 R )g +0(s")
(14b)

The calculation ofA- and B-functions, for general
classes of potentials, is described in more detdil

mine the perturbative expansion, and the perturbative 16]. On the basis 0{13) and (14a) we obtain the
expansion about the instantons, in higher order. They following perturbative expansmﬁ(pem(g) up to and

have the following expansions:
Brp(E, g)
5
= E +3E%g + (35153 + EE)g2
1155
+ ( 5 E*+ 105E )

(45045 5
E
4

1155

1501
5015 4 : E)g4

4

including terms of ordeg?3, for generalv,

165

5
EP(g) ~ N —3N%g — (17N3 + EN) g2
: NZ)g +0(*).

3754,
2
(15)

Here, the upper indef0) means that only the perturba-
tive expansion (in powers @) is taken into account.
For the ground stateN| = 0), all the terms vanish,
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whereas for excited states withh=1, 2, .. ., the per-
turbation series is manifestly nonvanishing.
The quantization conditiof12)is conjectured to be

U.D. Jentschura, J. Zinn-Justin / Physics Letters B 596 (2004) 138-144

instanton effect. Indeed, E@L7) is the one-instanton
contribution to the energy, characterized by a non-
analytic factor exp—1/3g) which is multiplied by

the secular equation whose solutions determine the en-a (divergent, nonalternating) power seriesginThis

ergy eigenvalues of the Fokker—Planck poter(al).
Eqgs.(14a)and(14b)can be used to expand the ground-

state energy eigenvalue up to sixth order in the nonper-

turbative factor exp-1/3g), and up to seventh order
in the couplingg. The general structure of the resur-
gent expansions determined (y2) differs slightly for

the ground state in comparison to the excited states.

This will be shown below, with a special emphasis on
the ground state.

4. Resurgent expansion for the ground state
Based on(12), we derive the following expansion

for the ground-state energW(= 0) of the Fokker—
Planck potentia{3d):

00 e_1/3g nn—1 2 k
v =35 ) (o)}
; 27 kZ=;) g
X an(l?l)gl (16)
=0

For small coupling, this expansion is strongly dom-
inated by the one-instanton effeat£ 1). An explicit
calculation using(14a) and (14b) leads to the fol-
lowing expansion for the ground-state energy of the
Hamiltonian Hep, which is valid up to terms of order

[exp(—1/3¢)12,
(o
6 72

exp(—%)
21
3924815 4 _ 3924815 4

T 31104 ¢ 31104 ¢
2943321255 163968231175,

186624 ° 6718464
18124314587725,

40310784
1858754650988072@
o))

1934917632
+O([exp—1/39)]). (17)

Because the penthation series(15) vanishes for
N = 0, the resurgent expansion starts with the one-

155 , 17315 5

0
E ~
FP(8) 1296

nonalternating series ig may be resummed by a
generalized Borel method (the generalized Borel sum
finds a natural representation in the sense of distribu-
tional Borel summability, which is effectively a Borel
sum in complex directions of the parameters, see, e.g.,
[20-24).

In analogy to the double-well potential, the imag-
inary part which is generated by this procedure (the
“discontinuity” of the distributional Borel sum in the
terminology of[22]) is compensated by an explicit
imaginary part that originates from the two-instanton
effect. We supplement here the first few terms of
the two-instanton shift of the ground-state eigenvalue
(terms withn = 2 in Eq.(16)):

_ 2
[exp(—1/3g)] {Zln(_g)_+2y

(27)?
2
()
+0(g%In g)}.

Here,y =0.577216...is Euler’s constant.
The perturbative coefficients about one instanton,
called {0} in Eq.(16), grow factorially as

(18)

Kr(k
37 ), K — o0

Fok ~—
Itis an easy exercise to verify that this factorial growth
exactly leads to an imaginary part that is canceled by
the imaginary part that results from the analytic con-
tinuation of the expression 2(r2/g) + 2y in (18)
from negative to positivg. The explicit coefficients in
(17) are consistent with the asymptotic form).

We have performed extensive numerical checks on
the validity of the expansiofL7). For example, ag =
0.007, the ground-state energy, obtained numerically,
is

(19)

E®(0.007) = 3.300209301936) x 10722 (20)

based on a calculation with a basis set composed of up
to 300 harmonic oscillator eigenstates. The numerical
uncertainty is estimated on the basis of the apparent
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convergence of the results under an appropriate in- (expansion ing) is fully restored for excited states,

crease of the number of states in the basis set. the resurgent expansion induced(thi) becomes very
When adding all terms up to the order gt in the close to the analogous expansion for the states of the

perturbative expansion about the leading instanton (the double-well potentia{6). By direct expansion of12),

first eight terms are givenin E¢L7), furthertermsare  taking advantage of the functional form of the depen-

available for downloa¢R5]), we obtain dence ofAgp(g) andBep(g) ong, we obtain the resur-

gent expansion

E®(0.007 ~3.30020930194% 1022 (21)
(e,N>0) (perd
With the term of ordeg? included, we have Egg" (@9 =Ey (8
E9(0.007) ~ 3.300 209301 936 1022 22) T 2\\*
Fp (- : +) [—eEn@]" Y {in(-=
in full agreement with(20) to all decimals shown. n=1 k=0 §

We should clarify why then-instanton contribu- i W) I
tion in the resurgent expansi¢®) for the double-well X ankl g (23)
potential (3b) involves thenth power of the expres- =0
sion exg—1/6g), while in the case of the ground- Here,s =+ is a remnant of the parity which is broken
state of the Fokker—Planck Hamiltonian it involves py vep(e), but only at orderg, E;\?e”)(g) is the per-
the nth power of exjp—1/3¢). One may answer this  tyrbative expansion given {15), andZy (g) is given
question by observing that in a symmetric potential, by
instanton configurations with an odd number of tun-
nelings between the minima yield a nonvanishing con- _, \/7 2N-lexp(—1/6g)
tribution to the path integral, and therefore, the “one- En(g) = 7 gNJNIN =D

!giiptotﬂatc Zglr?:riitlg:elr\]/vfar;leaizugg;v?ril tlr?eaof[;\a(:r For completeness, we iradite here the first few terms
J'I'he Ii);ear symmetry-breaking term of the Fokker—. for the resurgent expansion of the states with- 1,
y y g but opposite (perturbatively broken) parity= +, to

‘I‘Dlanslf potential I!ﬁs this degeneracy;_ the leading, leading order in the coupling up to the three-instanton
one’-instanton shift of the ground state is now a con- term

figuration in which the particle returns to the well
from which it started; the instanton action is therefore E%’V =D(g)

twice as large and the two-instanton contribution (the -
“bounce”-configuration in the case of the double-well =1+0@F “1(g)(1 + O(g))

potential) becomes the one-instanton solution in the +[z Z[m(_g) Ly — 1 +O(eln ]
case of the ground-state of the Fokker—Planck equa- [ 1(g)] g v 2 (gIng)

(24)

tion. =3[ 3,2( 2

As a last remark, it is useful to observe that al- F[F19)] [5 In (‘E)
though the correction terma(g — %) in Eqg. (3d) van- 3 2 5 3 3
ishes in the limitg — 0, one cannot recover the + (—— +3y) In(——) 4o —Zy+2y?
double-well quantization conditio(b) from (12) in X 2 8 8 2 2
this limit; it is nonuniform. + X L0 g)} (25)

12
5. Resurgent expansion for excited states
6. Conclusions

The energy of excited stated' (> 0) is dominated,
for small g, by the perturbative expansi¢h5) which We have presented the quantization condi{ibd)
is manifestly nonvanishing to all orders gn Because which, together with Eqg14a) and (14h)determines
the symmetry is broken only at ordgr(see Eq(3d)), the resurgent expansions for an arbitrary state (quan-

and because the dominancetibé perturbation series  tum numberV) of the Fokker—Planck potentigdc)up
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to seventh order in the coupling and up to andiclud-  ing atmosphere during a visit in January 2004, on the
ing the six-instanton order. For generdl > 0, the occasion of which part of this work was completed,
perturbation series is honvanishing (see @4)), and and the Alexander-von-Humboldt Foundation for sup-
the instanton contributions, for small coupling, yield port. The stimulating atmosphere at the National In-
tiny corrections to the energy. However, for the ground stitute of Standards ana&€hnology has contributed to
state withN = 0, the perturbation series vanishes to the completion of this project.

all orders in the coupling, and the resurgent expan-
sion (16) for the ground-state energy of the Fokker—
Planck potentia(3c) is dominated by the nonpertur-
bative factor exp—1/3g) that characterizes the one-
instanton contribution to the ground-state energy. The
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