3,618 research outputs found

    Deep Hubble Space Telescope/ACS Observations of I Zw 18: a Young Galaxy in Formation

    Full text link
    We present V and I photometry of the resolved stars in the most metal-deficient blue compact dwarf galaxy known, I Zw 18 (Zsun/50), using Hubble Space Telescope/Advanced Camera for Surveys (ACS) images, the deepest ones ever obtained for this galaxy. The resulting I vs. V-I color-magnitude diagram (CMD) reaches limiting magnitudes V=I=29 mag. It reveals a young stellar population of blue main-sequence (MS) stars (age <30 Myr) and blue and red supergiants (10 Myr<age<100 Myr), but also an older evolved population of asymptotic giant branch (AGB) stars (100 Myr<age<500 Myr). We derive a distance to I Zw 18 in the range 12.6 Mpc - 15 Mpc from the brightness of its AGB stars, with preferred values in the higher range. The red giant branch (RGB) stars are conspicuous by their absence, although, for a distance of I Zw 18 <15 Mpc, our imaging data go ~ 1-2 mag below the tip of the RGB. Thus, the most evolved stars in the galaxy are not older than 500 Myr and I Zw 18 is a bona fide young galaxy. Several star formation episodes can be inferred from the CMDs of the main body and the C component. There have been respectively three and two episodes in these two parts, separated by periods of ~ 100-200 Myr. In the main body, the younger MS and massive post-MS stars are distributed over a larger area than the older AGB stars, suggesting that I Zw 18 is still forming from the inside out. In the C component, different star formation episodes are spatially distinct, with stellar population ages decreasing from the northwest to the southeast, also suggesting the ongoing build-up of a young galaxy.Comment: 29 pages, 13 Postscript figures, accepted for publication in the Astrophysical Journa

    Sulfate and MSA in the air and snow on the Greenland Ice Sheet

    Get PDF
    Sulfate and methanesulfonic acid (MSA) concentrations in aerosol, surface snow, and snowpit samples have been measured at two sites on the Greenland Ice Sheet. Seasonal variations of the concentrations observed for these chemical species in the atmosphere are reproduced in the surface snow and preserved in the snowpit sequence. The amplitude of the variations over a year are smaller in the snow than in the air, but the ratios of the concentrations are comparable. The seasonal variations for sulfate are different at the altitude of the Ice Sheet compared to those observed at sea level, with low concentrations in winter and short episodes of elevated concentrations in spring. In contrast, the variations in concentrations of MSA are similar to those measured at sea level, with a first sequence of elevated concentrations in spring and another one during summer, and a winter low resulting from low biogenic production. The ratio MSA/sulfate clearly indicates the influence of high-latitude sources for the summer maximum of MSA, but the large impact of anthropogenic sulfate precludes any conclusion for the spring maximum. The seasonal pattern observed for these species in a snowpit sampled according to stratigraphy indicates a deficit in the accumulation of winter snow at the summit of the Greenland Ice Sheet, in agreement with some direct observations. A deeper snowpit covering the years 1985–1992 indicates the consistency of the seasonal pattern for MSA over the years, which may be linked to transport and deposition processes

    Statistics of the electromagnetic response of a chaotic reverberation chamber

    Get PDF
    This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.Comment: 6 pages, 9 figure

    The Carrington event not observed in most ice core nitrate records

    Get PDF
    The Carrington Event of 1859 is considered to be among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs

    Comment on “Low time resolution analysis of ice cores cannot detect impulsive nitrate events” by D. F. Smart et al.

    Get PDF
    Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events

    A spectroscopic study of component C and the extended emission around I Zw 18

    Get PDF
    Long-slit Keck II, 4m Kitt Peak, and 4.5m MMT spectrophotometric data are used to investigate the stellar population and the evolutionary status of I Zw 18C, the faint C component of the nearby blue compact dwarf galaxy I Zw 18. Hydrogen Hα\alpha and Hβ\beta emission lines are detected in the spectra of I Zw 18C, implying that ionizing massive stars are present. High signal-to-noise Keck II spectra of different regions in I Zw 18C reveal Hγ\gamma, Hδ\delta and higher order hydrogen lines in absorption. Several techniques are used to constrain the age of the stellar population in I Zw 18C. Ages derived from two different methods, one based on the equivalent widths of the Hα\alpha, Hβ\beta emission lines and the other on Hγ\gamma, Hδ\delta absorption lines are consistent with a 15 Myr instantaneous burst model. We find that a small extinction in the range AVA_V = 0.20 -- 0.65 mag is needed to fit the observed spectral energy distribution of I Zw 18C with that model. In the case of constant star formation, all observed properties are consistent with stars forming continuously between ~ 10 Myr and < 100 Myr ago. We use all available observational constraints for I Zw 18C, including those obtained from Hubble Space Telescope color-magnitude diagrams, to argue that the distance to I Zw 18 should be as high as ~ 15 Mpc. The deep spectra also reveal extended ionized gas emission around I Zw 18. Hα\alpha emission is detected as far as 30" from it. To a B surface brightness limit of ~ 27 mag arcsec2^{-2} we find no observational evidence for extended stellar emission in the outermost regions, at distances > 15" from I Zw 18.Comment: 38 pages, 11 Postscript figures, accepted for publication in the Astrophysical Journa

    A Serendipitous Search for High-Redshift Lyman alpha Emission: Two Primeval Galaxy Candidates at z~3

    Full text link
    In the course of our ongoing search for serendipitous high-redshift Lyman alpha (LyA) Emissionin deep archival Keck spectra, we discovered two very high equivalent width (W_{obs} ~ 450A, 2-sigma) LyA emission line candidates at z ~3 in a moderate dispersion (R~1200) spectrogram. Both lines have low velocity dispersions (sigma_v ~ 60 km/s) and deconvolved radii r ~ 1 kpc (h = 0.5). We argue that the lines are LyA, and are powered by stellar ionization. The surface density of robust, high equivalent width LyA candidates is estimated to be ~3 \pm 2 per arcmin^2 per unit redshift at z ~ 3, consistent with the estimate of Cowie etal (1998). The LyA emission line source characteristics are consistent with the galaxies undergoing their first burst of star formation, ie, with being primeval. Source sizes and velocity dispersions are comparable to the theoretical primeval galaxy model of Lin and Murray (1992) based on the inside-out, self-similar collapse of an isothermal sphere. In this model, star formation among field galaxies is a protracted process. Galaxies are thought to be able to display high equivalent widths for only the first few x 10 Myr. This time is short in relation to the difference in look back times between z=3 and z=4, and implies that a substantial fraction of strong line-emitting galaxies at z=3 were formed at redshifts z < 4. We discuss the significance of high-equivalent width LyA-emitting galaxies in terms of the emerging picture of the environment, and the specific characteristics of primeval galaxy formation at high redshift.Comment: 17 pages, 3 figures, one table. To appear in the Astrophysical Journa

    Stress fractures in 2011: practical approach

    Get PDF
    Stress fractures occur when excessive loads are applied to a bone whose mechanical strength is normal. Bone insufficiency fractures, in contrast, are due to physiological loads applied to bone of inadequate mechanical strength [1]. This contradistinction is obviously an oversimplifi cation. In practice, a continuum exists between these two clearly defined situations. The objective of the third ODISSEE meetings [2,3] held under the aegis of the GRIO was to review current knowledge on stress fractures. The pathophysiology of stress fractures is still poorly understood. When loads are applied to a bone, particularly in a repetitive manner, an elastic deformity occurs, followed by a plastic deformity and, finally, by microfractures. Bone strength varies across individuals. It depends not only on the intrinsic qualities of the bone tissue, but also on the magnitude and repetitiveness of the loads applied to the bone. Bone tissue fatigue is an inability to repair the microdamage caused by mechanical loading. The number and length of the microfractures increase, resulting in a fracture with clinical symptoms and radiographic changes [4]. Stress fractures are a common reason for physician visits among athletes and military recruits. They account for 5% to 14% of all physician visits, depending on the study population [5,6]. Although stress fractures can arise at any site, the most common locations are the tibia, particularly in runners; the metatarsals (most notably the second and third metatarsals) in hikers, runners, dancers, and military recruits; the iliopubic and ischiopubic rami of the pelvis in military recruits, gymnasts, dancers, and soccer players; and the femur in cross-country runners. The calcaneus is also a common site of involvement in all populations. Stress fractures are rare at the upper limbs, except in high- level gymnasts country runners. The calcaneus is also a common site of involvement in all populations. Stress fractures are rare at the upper limbs,except in high-level gymnasts

    An imaging and spectroscopic study of the very metal-deficient blue compact dwarf galaxy Tol 1214--277

    Get PDF
    We present a spectrophotometric study based on VLT/FORS I observations of one of the most metal-deficient blue compact dwarf (BCD) galaxies known, Tol 1214-277 (Z ~ Zsun/25). The data show that roughly half of the total luminosity of the BCD originates from a bright and compact starburst region located at the northeastern tip of a faint dwarf galaxy with cometary appearance. The starburst has ignited less than 4 Myr ago and its emission is powered by several thousands O7V stars and ~ 170 late-type nitrogen Wolf-Rayet stars located within a compact region with < 500 pc in diameter. For the first time in a BCD, a relatively strong [Fe V] 4227 emission line is seen which together with intense He II 4686 emission indicates the presence of a very hard radiation field in Tol 1214-277. We argue that this extraordinarily hard radiation originates from both Wolf--Rayet stars and radiative shocks in the starburst region. The structural properties of the low-surface-brightness (LSB) component underlying the starburst have been investigated by means of surface photometry down to 28 B mag/sq.arcsec. We find that, for a surface brightness level fainter than ~ 24.5 B mag/sq.arcsec, an exponential fitting law provides an adequate approximation to its radial intensity distribution. The broad-band colors in the outskirts of the LSB component of Tol 1214-277 are nearly constant and are consistent with an age below one Gyr. This conclusion is supported by the comparison of the observed spectral energy distribution (SED) of the LSB host with theoretical SEDs.Comment: 17 pages, 11 Postscript figures, uses emulateapj.sty, to appear in Astronomical Journa

    Selective amplification of scars in a chaotic optical fiber

    Get PDF
    In this letter we propose an original mechanism to select scar modes through coherent gain amplification in a multimode D-shaped fiber. More precisely, we numerically demonstrate how scar modes can be amplified by positioning a gain region in the vicinity of specific points of a short periodic orbit known to give rise to scar modes
    corecore