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Statistics of the electromagnetic response of a chaotic reverberation chamber
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Abstract

This article presents a study of the electromagnetic re-
sponse of a chaotic reverberation chamber (RC) in the pres-
ence of losses. By means of simulations and of experi-
ments, the fluctuations in the maxima of the field obtained
in a conventional mode-stirred RC are compared with those
in a chaotic RC in the neighborhood of the Lowest Useable
Frequency (LUF). The present work illustrates that the uni-
versal spectral and spatial statistical properties of chaotic
RCs allow to meet more adequately the criteria required by
the Standard IEC 61000-4-21 to perform tests of electro-
magnetic compatibility.

1. Introduction
The electromagnetic (EM) reverberation chambers (RC)
are commonly used for electromagnetic compatibility tests.
Thanks to the presence of a mechanical stirrer and losses
leading to modal overlap, the systems under test are sub-
mitted to a supposedly statistically isotropic, uniform and
depolarized electromagnetic field [1]. These properties are
generally well realized if the excitation frequency is much
larger than the lowest useable frequency (LUF). It is impor-
tant to underline here that the LUF depends strongly at the
same time on the size of the chamber and on the importance
of the modal overlap induced by the losses (either related to
Ohmic dissipation at walls, to junction imperfections, or to
antennas) [2]. The statistical behavior of the field, required
in an RC above the LUF, is supposed to rely on the validity
of Hill’s hypothesis, according to which the EM field can
be considered as a random superposition of plane waves
[3, 4]. It is generally admitted that this hypothesis is real-
ized for efficient stirring conditions. Yet it turns out that this
statistical behavior is naturally realized, with regard to the
spatial distribution, for most resonant modes in a chaotic
cavity without resorting to any stirring [5]. Therefore one
can take advantage of the universal statistical properties of
the chaotic cavities to improve the behavior of the RC in the
neighborhood of the LUF. A mechanical or electrical stir-
ring is still necessary to verify RC well-operating statistical
criteria. It is what we wish to demonstrate here by compar-
ing the EM responses in a chaotic RC and in a commercial
mode-stirred RC, obtained via a numerical model and ex-
perimental measurements. We would like to emphasize that
well above the LUF, these improvements are negligible for

the response, as a strong modal overlap already guarantees
that Hill’s hypothesis is valid. Thus we concentrate in this
paper at frequencies close to the LUF.

2. How to make a commercial RC chaotic
Here we study a chaotic RC (left of Fig. 1) and a conven-
tional RC equipped with a stirrer (right of Fig. 1). To assess
the chaoticity of the cavity shown in the left side of Fig. 1,
we use the methodology presented in [5] which proposes to
use the predictions of the random matrix theory (RMT) as
quantitative criteria. Indeed, since the Bohigas-Giannoni-
Schmit conjecture [6] concerning the universality of level
fluctuations in chaotic quantum spectra, it has become cus-
tomary to analyse spectral statistics of chaotic cavities with
the help of statistical tools introduced by RMT. To this end,
in both RCs of Fig. 1, we computed 880 eigenmodes of
the lossless cavities for a fixed position of the stirrer and
deduced the cumulated distribution function (CDF) of the
normalized frequency spacings. Those CDFs are compared
in Fig. 2 with the corresponding CDF of the Wigner surmise
which turns out to be an excellent approximation of the ex-
act result deduced from the Gaussian orthogonal ensemble
(GOE) of RMT, known to predict the universal statistical
behavior of chaotic cavities. Only the RC with the hemi-
spheres complies with the GOE prediction (Fig. 2). We
would like to emphasize that this result would occur for
any stirrer position and therefore also for the ensemble av-
erage. It is a clear demonstration that the stirrer itself is not
adequate to make the RC fully chaotic. The introduction
of the three half-spheres drastically reduce the amount of
parallel walls and efficiently suppresses almost all regular
modes which are still present in the conventional RC [5]. In
principle this could also be achieved by introducing a large
and complex structured stirrer, albeit strongly reducing the
available space for the investigated objects.

3. Modelling the response of an RC in the
presence of losses

Now, we model the influence of Ohmic losses on the EM re-
sponse inside an RC, at frequency f , via the Dyadic Green’s
tensor (DGT) with complex values:

G(~r, ~r0, f) =
∞∑
n=1

k2n ~En(~r)⊗ ~En(~r0)

k2(k2n − k2)
(1)



Figure 1: Left: RC made chaotic through the introduc-
tion of 3 half-spheres. Right: Conventional RC. The small
squares correspond to Ohmic absorptive patches. For both
cavities, the dimensions are: Lx = 2.951 m, Ly = 2.751
m, Lz = 2.354 m.
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Figure 2: CDFs of the normalized eigenfrequency spacings
for the conventional RC (blue curve) and for the chaotic
RC (red curve) are compared to the Wigner Surmise (dash-
dotted).

where the sum runs over the complex resonances defined by
their eigenvalues kn = 2πfn

c (1 − i
2Qn

) with fn the central
frequency of the nth resonance and fn/Qn = Γn its width,
and the complex eigenfields ~En at the measurement point
~r and at the excitation point ~r0 (a current pointlike source).
In the literature, the DGT is often written as a matrix:

G =

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

 (2)

where each column (i = x, y, ou z) contains the three
Cartesian components of the electric vector field for an ex-
citation polarized along ~ei.

In the case of a chaotic RC, the complexness parameter
of modes, defined by:

q2n =

〈
Im
[
~En
]
· Im

[
~En
]〉

〈
Re
[
~En
]
· Re

[
~En
]〉 (3)

(where the vectorial field is appropriately normalized via

the transformation ~En → ~En/
√∫∫∫

~En · ~Endv which can-
cels the global phase of each component [7]) as well the
widths Γn of resonances, verify the statistical predictions
obtained with the help of RMT applied to open chaotic sys-
tems (see for instance [8] and references therein and [9] for
a more recent theoretical and experimental investigation of
width shift distribution in the chaotic RC discussed in sec-
tion 5 of the present paper).

In the studied range of frequencies, for the dimensions
indicated in Fig. 1, if losses were only due to the finite con-
ductivity of the walls, the mean quality factor would be of
the order of 104 − 105. Still, in practice, the latter is rather
of the order of a few 103 due to losses related to anten-
nas, imperfections at junctions and to sundry objects intro-
duced in the RC. For the sake of simplicity, in our models,
the losses are introduced through identical patches (Fig. 1),
distributed over the walls, with a conductivity chosen to en-
sure a mean quality factor (〈Qn〉) of the RC ranging from
1500 to 2000 (which are realistic values in RCs with such
dimensions around 400 MHz). Perfect metallic boundaries
were imposed on other parts of the walls. The complex res-
onances (kn and ~En) in both RCs of Fig. 1 were obtained
via a FEM software.

4. Statistical study
4.1. Statistics of the elements of the DGT

In order to perform a statistical study, we consider 30 dif-
ferent stirrer positions (hereafter mentioned as configura-
tions) for each RC, which were obtained by rotating the
stirrer around its axis. For each configuration, the DGT
Equation (1) was numerically computed at 300 frequen-
cies of excitation regularly spaced between 7fc and 7.3fc
(where fc is the cut-off frequency of one of the config-
urations of the chaotic RC). This interval, situated in the
neighborhood of the 370th mode, roughly consists of 50
resonances whose mean modal overlap, defined by d =
〈Γn〉 /∆f = 8πV f3c−3 〈Qn〉−1 (where ∆f is the mean
spacing between adjacent resonant frequencies and V is the
volume of the RC), is approximately equal to 0.45.

For frequencies much larger than the LUF, where in fact
d � 1, Hill’s hypothesis is generally verified. The latter
leads to a complex EM field, each Cartesian component of
which has real and imaginary parts which are statistically
independent and identically distributed following a normal
distribution. In this case, the distribution of the squared
modulus of each component follows an exponential law.
This regime has been extensively explored in other contexts
such as in nuclear physics (Ericson’s regime) and in room
acoustics (Schroeder’s regime) [10]. Yet, in the regime we
are actually concerned with (d . 1), the real and imagi-
nary parts of each component of the field are not identically
distributed [5, 7]. For a given frequency of excitation and
a given configuration, in the case of an ideally chaotic RC,
they still are distributed according to normal laws, but with
different variances. The ensuing distribution of the squared
modulus of each component Ii = |Ei|2 is then no longer
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Figure 3: Empirical distributions of the normalised inten-
sities: blue histogram for the conventional RC and red his-
togram for the chaotic one. Comparison with the predic-
tion Equation (6) (blue and red continuous curves) where
the empirical p(ρ) was used (see inset with corresponding
colors). The dashed black curve shows the exponential dis-
tribution expected under Hill’s hypothesis

exponential and depends on a single parameter ρi, called
the phase rigidity, defined by:

ρi =

〈
E2
i

〉〈
|Ei|2

〉 . (4)

More precisely, the distribution of Ĩi = Ii/ 〈Ii〉 depends on
the sole modulus of ρ through the expression [11]

Pρi(Ĩi) =
1√

1− |ρi|2
exp

[
− Ĩi

1− |ρi|2

]
Io

[
|ρi| Ĩi

1− |ρi|2

]
(5)

This distribution has been previously proposed by Pnini and
Shapiro in [12] in order to model partially open chaotic
systems and provides an interpolation between the two
ideal distributions, namely Porter-Thomas for closed sys-
tems (|ρ| → 1) and exponential for completely open sys-
tems (|ρ| = 0 ). Recently, in [13], this distribution was
compared to empirical distributions obtained in a conven-
tional RC at low frequency. Unfortunately, such a compar-
ison did not take into account the non-universal character
of the conventional RCs at low frequency, nor even the fact
that ρ is a parameter which is distributed with frequency as
well as with stirrer configuration [11] as shown in the in-
set of Fig. 3. Indeed, this parameter has to fluctuate either
through a mechanical or electronic stirring. In the chaotic
RC, due to the isotropy of the field, we observed that, for
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Figure 4: Fluctuations of maxima in dB. Chaotic RC:
red connected points. Conventional RC: blue connected
crosses.

a given frequency of excitation and a given configuration,
each column of the DGT is associated to a single value of
ρ. Thus, through any type of stirring (mechanical or elec-
tronic), the resulting distribution of normalised intensities
of any Cartesian component is given by:

P (Ĩ) =

∫ 1

0

Pρ(Ĩ)p(ρ)dρ (6)

This result is illustrated in Fig. 3 where the empirical distri-
butions of the normalised intensities of all the components
(for all the excitation frequencies and all stirrer configura-
tions) for both RCs are compared with the above equation,
where the empirical distribution of ρ was used. The excel-
lent agreement between the prediction (6) and the empiri-
cal distribution associated to the chaotic RC (red curve and
histogram) clearly demonstrates that the assumptions of sta-
tistical uniformity and isotropy (from which Equations (5)
and (6) are deduced) are only verified in the chaotic RC.
One should note that the blue histogram related to the con-
ventional RC agrees neither with Equation (6) (blue curve)
nor with the exponential distribution expected when Hill’s
hypothesis holds (dashed black curve).

4.2. Field uniformity criterion from the International
Standard

Here we are interested in the fluctuations of the maxima of
the field amplitude evaluated through [1]:

σdB(f) = 20 log10

(
1 +

σmax

〈|Ea| max〉

)
(7)

According to [1], one chooses 8 measurement points (dis-
tant from at least a quarter of a wavelength). At each
of theses points, for 30 uncorrelated positions of the stir-
rer, one computes the DGT (2) (each column being di-
vided by the square root of the input power) and one
keeps, for each line, the component with maximum mod-
ulus |Ea| max = |max (Gai)| . One then computes the av-
erage and the standard deviation over the 8×3 values of
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Figure 5: Histograms of values of σdB obtained for 8 (red),
16 (blue), 64 (green) measurement points in the chaotic RC.
The red, blue and green dashes represent respectively the
average value of σdB for 8, 16 and 64 points. The limit at
3 dB is also shown. The percentages of values above this
limit are respectively: 0.33 %, 0 % and 0 %.

|Ea| max = {|Ex| max, |Ey| max, |Ez| max}. In the Interna-
tional Standard [1], the field is assumed to be uniform when
σdB < 3dB. The chaotic RC (red curve of Fig. 4) complies
almost always with this criterion and in a much better way
than the conventional RC does (blue curve of Fig. 4).

In order to quantify more adequately these different be-
haviors, we propose to represent them through histograms
and to consider how they change as the number of mea-
surement points is varied (see Fig. 5 and Fig. 6). The his-
tograms shown in Fig. 5 correspond respectively to 8, 16
and 64 measurement points in the chaotic RC. It is clear
that increasing the number of points does not modify the
average significantly (red, blue and green dashes superim-
posed) and tends to concentrate the histograms around a
unique average value which is definitely less than 3 dB.

In complete contradistinction, the histograms presented
in Fig. 6 associated to the conventional RC, exhibit a be-
havior depending on the number of points. Indeed, the av-
erage values significantly depend on the number of mea-
surement points and are much higher than in the chaotic
RC. Moreover, the dispersions do not tend to be reduced
when the number of points increases. This clearly demon-
strates the non universality of the field statistics obtained in
a non-chaotic RC.

On the basis of the numerical results presented above,
it is more than plausible that the universal statistical fea-
tures of the response in a chaotic RC guarantees a more
important reliability of the criterion of uniformity proposed
by the Standard. The strong sensibility of the criterion of
uniformity towards the number of measurement points in a
conventional RC, in the neighborhood of the LUF, tends to
demonstrate its inadequacy in a non-chaotic RC.

Figure 6: Histograms of values of σdB obtained for 8 (red),
16 (blue), 64 (green) measurement points in the conven-
tional RC. The red, blue and green dashes represent respec-
tively the average value of σdB for 8, 16 and 64 points. The
limit at 3 dB is also shown. The percentages of values above
this limit are respectively: 25.7 %,16 % et 27.3 %.

5. Experimental study

Figure 7: Artist 3D-view of the reverberation chamber
made chaotic through the addition of 3 half-spheres. The
volume of the RC is 19.1 m3 without the half-spheres, each
having a radius of 40 cm.

This section presents experiments that were performed
in a commercial RC equipped with a vertical stirrer as al-
ready mentioned above. This RC is made chaotic by the
addition of 3 metallic half-spheres on its walls (cf Fig. 7).
The chaotic character of this configuration was verified by
the methods described in the reference [5]. In both configu-
rations of this RC (bare or with half-spheres) (V ' 20 m3),
the S-matrix was measured between two antennas (one
dipole and one monopole). Measurements were realized for

41



Figure 8: Histograms of values of σdB experimentally ob-
tained in the two configurations of the RC shown in Fig. 7.
Also shown: the limit at 3dB (black dash-dots) and the
mean of σdB (blue dashes). Above: histogram for the con-
ventional RC with the stirrer (〈σdB〉 = 2.57). Below: his-
togram for the chaotic RC with 3 half-spheres and the stirrer
(〈σdB〉 = 2.18).

1024 regularly spaced frequencies in a frequency range of
20 MHz centered around 400 MHz, for 30 positions of the
stirrer spaced by 12 degrees and for 8 different positions of
the monopole antenna inside the volume. After extracting
the coupling strength of the antennas [8, 7], one can de-
duce from the measurement of S12 the normalized value of
the amplitude of the Cartesian component of the field along
the monopole antenna whose orientation is kept fixed. The
mean quality factor is estimated to be around 2000 and ap-
pears to be almost insensitive to the introduction of the half-
spheres. In the frequency range of our study (of the order
of 5 to 6 times the cut-off frequency), the modal overlap
d∼0.45 remains moderate. d is deduced directly from the
measurements by extracting the complex resonances using
the method of harmonic inversion[9]. From the measured
responses, we will concentrate on the analysis of the crite-
rion of uniformity. As in the previous section, in Fig. 8 we
present a comparison of histograms of σdB obtained experi-
mentally in the two configurations mentioned above. These
preliminary measurements tend to confirm the numerical

Figure 9: Histograms of values of σdB numerically ob-
tained (via the DGT) in the two configurations of the RC
shown in Fig. 7. As previously the losses are introduced
via 6 patchs of very low conductivity leading to d . 1.
Also shown: the limit at 3dB (black dash-dots) and the
mean of σdB (red dashes). Above: histogram for the con-
ventional RC with the stirrer (〈σdB〉 = 2.63). Below: his-
togram for the chaotic RC with 3 half-spheres and the stirrer
(〈σdB〉 = 2.17).

results presented in the previous section. Indeed, the crite-
rion of uniformity is verified in a much better way in the
chaotic configuration, in particular because of a reduced
dispersal of the distribution of σdB around an average value
which is itself lower.

These experimental results also confirm the validity of
our numerical approach. Fig. 9 shows the histograms of
σdB , obtained through the computation of a single element
of the DGT for geometries and configurations (numbers of
steps of the stirrer, locations of the measurement points,...)
as close as possible to those of our experiments, in partic-
ular through the introduction of Ohmic losses localized on
the walls and ensuring a value of the mean modal overlap
d . 1. The experimental and numerical behaviors agree
remarkably well.
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6. Conclusions
This paper deals with the statistics of the EM response in
a reverberation chamber made chaotic by adding spherical
elements in the presence of losses. The response is mod-
eled by taking into account the complex character of the
modes of the cavity in the expression of the Dyadic Green’s
tensor. A numerical study demonstrates that the criterion of
uniformity of the Standard, in the vicinity of the LUF and in
a regime of moderate modal overlap, is only relevant if the
RC is chaotic. These numerical results are experimentally
confirmed for the first time in a commercial reverberation
chamber modified to be chaotic. The numerical approach
and the ensuing analysis are thus validated.
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