27 research outputs found

    ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing.

    Get PDF
    Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications, including DNA methylation, histone H3 dimethylation at Lys9 (H3K9me2) and monomethylation at Lys27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified; alterations in these proteins lead to reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 have H3K27 monomethyltransferase activity, and atxr5 atxr6 double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Notably, H3K9me2 and DNA methylation are unaffected in double mutants. These results indicate that ATXR5 and ATXR6 form a new class of H3K27 methyltransferases and that H3K27me1 represents a previously uncharacterized pathway required for transcriptional repression in Arabidopsis

    The natural history of insomnia : a population-based 3-year longitudinal study

    Get PDF
    Background Despite its high prevalence, little information is available about the natural history of insomnia. The extent to which episodes of insomnia will persist or remit over time is difficult to predict. We examined the natural history of insomnia and describe the most common trajectories over 3 years. Methods Three hundred eighty-eight adults (mean [SD] age, 44.8 [13.9] years; 61% women) were selected from a larger population-based sample on the basis of the presence of insomnia at baseline. They completed standardized sleep/insomnia questionnaires at 3 annual follow-up assessments. For each follow-up assessment, participants were classified into 1 of 3 groups (individuals with an insomnia syndrome, individuals with insomnia symptoms, and individuals with good sleep) on the basis of algorithms using standard diagnostic criteria for insomnia. Rates of persistent insomnia, remission, and relapse were computed for each group. Results Of the study sample, 74% reported insomnia for at least 1 year (2 consecutive assessments) and 46% reported insomnia persisting over the entire 3-year study. The course of insomnia was more likely to be persistent in those with more severe insomnia at baseline (ie, insomnia syndrome) and in women and older adults. Remission rate was 54%; however, 27% of those with remission of insomnia eventually experienced relapse. Individuals with subsyndromal insomnia at baseline were 3 times more likely to remit than worsen to syndrome status, although persistence was the most frequent course in that group as well. Conclusion These findings indicate that insomnia is often a persistent condition, in particular when it reaches the diagnostic threshold for an insomnia disorder

    In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways

    Get PDF
    BACKGROUND: In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. PRINCIPAL FINDINGS: Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. CONCLUSION: Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization

    Functional Characteristics of a Highly Specific Integrase Encoded by an LTR-Retrotransposon

    Get PDF
    Background: The retroviral Integrase protein catalyzes the insertion of linear viral DNA into host cell DNA. Although different retroviruses have been shown to target distinctive chromosomal regions, few of them display a site-specific integration. ZAM, a retroelement from Drosophila melanogaster very similar in structure and replication cycle to mammalian retroviruses is highly site-specific. Indeed, ZAM copies target the genomic 59-CGCGCg-39 consensus-sequences. To enlighten the determinants of this high integration specificity, we investigated the functional properties of its integrase protein denoted ZAM-IN. Principal Findings: Here we show that ZAM-IN displays the property to nick DNA molecules in vitro. This endonuclease activity targets specific sequences that are present in a 388 bp fragment taken from the white locus and known to be a genomic ZAM integration site in vivo. Furthermore, ZAM-IN displays the unusual property to directly bind specific genomic DNA sequences. Two specific and independent sites are recognized within the 388 bp fragment of the white locus: the CGCGCg sequence and a closely apposed site different in sequence. Conclusion: This study strongly argues that the intrinsic properties of ZAM-IN, ie its binding properties and its endonuclease activity, play an important part in ZAM integration specificity. Its ability to select two binding sites and to nick the DNA molecule reminds the strategy used by some site-specific recombination enzymes and forms the basis for site-specifi

    Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots.

    Get PDF
    Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed

    Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial

    Get PDF
    corecore