42 research outputs found

    A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

    Full text link
    Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis processWe thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R.Micó Vicent, B.; Jordán Núñez, J.; Martinez Verdu, FM.; Balart Gimeno, RA. (2017). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science. 52(2):889-898. https://doi.org/10.1007/s10853-016-0384-8S889898522Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi: 10.1016/j.compscitech.2010.05.022Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi: 10.1016/j.compscitech.2012.01.005Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi: 10.1016/j.compscitech.2007.01.030Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi: 10.1016/j.eurpolymj.2007.03.013Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi: 10.1016/j.tca.2006.11.002Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi: 10.1023/a:1022308705231Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi: 10.1002/(sici)1099-1018(200001/02)24:13.0.co;2-sRay SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi: 10.1016/j.compositesb.2015.03.061LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi: 10.1016/s0169-1317(99)00017-4Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi: 10.1007/s00289-008-0018-7Beltrán MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi: 10.1016/j.clay.2013.08.028Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi: 10.1016/j.compscitech.2011.11.018Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi: 10.1016/j.tifs.2010.07.008Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi: 10.1016/j.clay.2013.09.004Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi: 10.1016/j.polymer.2005.06.101Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi: 10.1002/pi.2310Montgomery DC (2008) Design and analysis of experiments. Wiley, HobokenBaena-Murillo E, Micó-Vicent B, Martínez-Verdú FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi: 10.1016/j.clay.2011.09.001Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi: 10.1016/s0021-9797(03)00602-7Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi: 10.1016/j.clay.2011.08.002Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi: 10.1016/j.msea.2009.07.023Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi: 10.1016/j.watres.2004.12.008Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi: 10.1180/claymin.1983.018.4.10Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi: 10.1016/j.jcis.2009.04.065Capilla P, Pujol J (2002) Fundamentos de Colorimetría. Universitat de ValenciaGilabert EJ, Verdú FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofísico, pp 185–221Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi: 10.1016/j.jcis.2004.03.05

    Comparison of techniques used to count single-celled viable phytoplankton

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Applied Phycology 24 (2012): 751-758, doi:10.1007/s10811-011-9694-z.Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry (FlowCAM). Counting methods were all able to estimate the cell concentrations, categorize cells into size classes, and determine cell viability using fluorescent probes. These criteria are essential to determine whether discharged ballast water complies with international standards that limit the concentration of viable planktonic organisms based on size class. Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton. All count methods used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells. With the exception of one sample, the methods generated live and non-viable cell counts that were significantly different from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all methods. Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60% were observed). Since all four methods were generally appropriate for monitoring discharged ballast water, ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for choosing the optimal phytoplankton counting method.This study was supported by the U.S. Coast Guard Research and Development Center under contract HSCG32-07- X-R00018. Partial research support to DMA and DMK was provided through NSF International Contract 03/06/394, and Environmental Protection Agency Grant RD-83382801-0

    Complex Evolutionary Systems in Behavioral Finance

    Full text link
    corecore