141 research outputs found

    Mathematical modeling of respiratory system mechanics in the newborn lamb.

    No full text
    International audienceIn this paper, a mathematical model of the respiratory mechanics is used to reproduce experimental signal waveforms acquired from three newborn lambs. As the main challenge is to determine specific lamb parameters, a sensitivity analysis has been realized to find the most influent parameters, which are identified using an evolutionary algorithm. Results show a close match between experimental and simulated pressure and flow waveforms obtained during spontaneous ventilation and pleural pressure variations acquired during the application of positive pressure, since root mean square errors equal to 0.0119, 0.0052 and 0.0094. The identified parameters were discussed in light of previous knowledge of respiratory mechanics in the newborn

    A tissue-level model of the left ventricle for the analysis of regional myocardial function.

    Get PDF
    International audienceThis paper presents a model-based method for the analysis of regional myocardial strain, based on echocardiography and Tissue Doppler Imaging (TDI). A multi-formalism, tissue-level electromechanical model of the left ventricle is proposed. The parameters of the model are identified in order to reproduce regional strain signal morphologies obtained from a healthy subject and a patient presenting a dilated cardiomyopathy. The parameters identified for the DCM patient allow the localization of the failing myocardial segments and may be useful for a better design of cardiac resynchronization therapy on heart failure patients

    Model-based analysis of the autonomic response to head-up tilt testing in Brugada syndrome

    Get PDF
    The etiology of Brugada syndrome (BS) is complex and multifactorial, making risk stratification in this population a major challenge. Since changes in the autonomic modulation of these patients are commonly related to arrhythmic events, we analyze in this work whether the response to head-up tilt (HUT) testing on this population may provide useful, complementary information for risk stratification. In order to perform this analysis, a coupled physiological model integrating the cardiac electrical activity, the cardiovascular system and the baroreceptors reflex control of the autonomic function, in response to HUT is proposed. A sensitivity analysis was performed, based on a screening method, evidencing the influence of cardiovascular parameters on blood pressure and of baroreflex regulation on heart rate. The most sensitive parameters have been identified on a set of 20 subjects (8 controls and 12 BS patients), so as to assess subject-specific model parameters. According to the results, controls showed an increased sympathetic modulation after tilting, as well as a reduced left ventricular contractility was observed in symptomatic, with respect to asymptomatic BS patients. These results provide new insights regarding the autonomic mechanisms regulating the cardiovascular system in BS which might be used as a complementary source of information, along with classical electrophysiological parameters, for BS risk stratification.Peer ReviewedPostprint (author's final draft

    A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    No full text
    International audienceThis paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions

    Multivariate ensemble classification for the prediction of symptoms in patients with Brugada syndrome

    Get PDF
    Identification of asymptomatic patients at higher risk for suffering cardiac events remains controversial and challenging in Brugada syndrome (BS). In this work, we proposed an ECG-based classifier to predict BS-related symptoms, by merging the most predictive electrophysiological features derived from the ventricular depolarization and repolarization periods, along with autonomic-related markers. The initial feature space included local and dynamic ECG markers, assessed during a physical exercise test performed in 110 BS patients (25 symptomatic). Morphological, temporal and spatial properties quantifying the ECG dynamic response to exercise and recovery were considered. Our model was obtained by proposing a two-stage feature selection process that combined a resampled-based regularization approach with a wrapper model assessment for balancing, simplicity and performance. For the classification step, an ensemble was constructed by several logistic regression base classifiers, whose outputs were fused using a performance-based weighted average. The most relevant predictors corresponded to the repolarization interval, followed by two autonomic markers and two other makers of depolarization dynamics. Our classifier allowed for the identification of novel symptom-related markers from autonomic and dynamic ECG responses during exercise testing, suggesting the need for multifactorial risk stratification approaches in order to predict future cardiac events in asymptomatic BS patients. Graphical abstract Pipeline for feature selection and predictive modeling of symptoms in Brugada syndrome.Peer ReviewedPostprint (author's final draft

    Characterisation of RT1-E2, a multigenic family of highly conserved rat non-classical MHC class I molecules initially identified in cells from immunoprivileged sites

    Get PDF
    BACKGROUND: So-called "immunoprivileged sites" are tissues or organs where slow allograft rejection correlates with low levels of expression of MHC class I molecules. Whilst classical class I molecules are recognised by cytotoxic T lymphocytes (CTL), some MHC class I molecules are called "non-classical" because they exhibit low polymorphism and are not widely expressed. These last years, several studies have shown that these can play different, more specialised roles than their classical counterparts. In the course of efforts to characterise MHC class I expression in rat cells obtained from immunoprivileged sites such as the central nervous system or the placenta, a new family of non-classical MHC class I molecules, which we have named RT1-E2, has been uncovered. RESULTS: Members of the RT1-E2 family are all highly homologous to one another, and the number of RT1-E2 loci varies from one to four per MHC haplotype among the six rat strains studied so far, with some loci predicted to give rise to soluble molecules. The RT1(n )MHC haplotype (found in BN rats) carries a single RT1-E2 locus, which lies in the RT1-C/E region of the MHC and displays the typical exon-intron organisation and promoter features seen in other rat MHC class I genes. We present evidence that: i) RT1-E2 molecules can be detected at the surface of transfected mouse L cells and simian COS-7 cells, albeit at low levels; ii) their transport to the cell surface is dependent on a functional TAP transporter. In L cells, their transport is also hindered by protease inhibitors, brefeldin A and monensin. CONCLUSIONS: These findings suggest that RT1-E2 molecules probably associate with ligands of peptidic nature. The high homology between the RT1-E2 molecules isolated from divergent rat MHC haplotypes is particularly striking at the level of their extra-cellular portions. Compared to other class I molecules, this suggests that RT1-E2 molecules may associate with well defined sets of ligands. Several characteristics point to a certain similarity to the mouse H2-Qa2 and human HLA-G molecules

    SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis.

    Get PDF
    International audienceWe present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations

    The saga of dyssynchrony imaging: Are we getting to the point

    Get PDF
    Cardiac resynchronisation therapy (CRT) has an established role in the management of patients with heart failure, reduced left ventricular ejection fraction (LVEF < 35%) and widened QRS (>130 msec). Despite the complex pathophysiology of left ventricular (LV) dyssynchrony and the increasing evidence supporting the identification of specific electromechanical substrates that are associated with a higher probability of CRT response, the assessment of LVEF is the only imaging-derived parameter used for the selection of CRT candidates.This review aims to (1) provide an overview of the evolution of cardiac imaging for the assessment of LV dyssynchrony and its role in the selection of patients undergoing CRT; (2) highlight the main pitfalls and advantages of the application of cardiac imaging for the assessment of LV dyssynchrony; (3) provide some perspectives for clinical application and future research in this field.Conclusionthe road for a more individualized approach to resynchronization therapy delivery is open and imaging might provide important input beyond the assessment of LVEF
    • …
    corecore