74 research outputs found

    Evidence of a Goal-Directed Process in Human Pavlovian-Instrumental Transfer

    Get PDF
    © 2017 APA, all rights reserved). Cues that signal rewards can motivate reward-seeking behaviors, even for outcomes that are not currently desired. Three experiments examined this phenomenon, using an outcome-selective Pavlovian-instrumental transfer (PIT) design and an outcome devaluation procedure. In Experiment 1, participants learned to perform one response to earn crisps points and another response to earn popcorn points. One outcome was then devalued by adulterating it to make it taste unpleasant. On test, overall response choice was biased toward the outcome that had not been devalued, indicating goal-directed control. Stimuli that signaled crisps and popcorn also biased instrumental response choice toward their respective outcomes (a PIT effect). Most importantly, the strength of this bias was not influenced by the devaluation manipulation. In contrast, Experiment 2 demonstrated that when stimuli signaled equal probability of the two outcomes, cue-elicited response choice was sensitive to the devaluation manipulation. Experiment 3 confirmed this conclusion by demonstrating a selective avoidance of the cued, devalued outcome. Together, these data support a goal-directed model of PIT in which expected outcome probability and value make independent contributions to response choice. (PsycINFO Database Recor

    Attention and associative learning in humans: An integrative review

    Get PDF
    This article presents a comprehensive survey of research concerning interactions between associative learning and attention in humans. Four main findings are described. First, attention is biased toward stimuli that predict their consequences reliably (learned predictiveness). This finding is consistent with the approach taken by Mackintosh (1975) in his attentional model of associative learning in nonhuman animals. Second, the strength of this attentional bias is modulated by the value of the outcome (learned value). That is, predictors of high-value outcomes receive especially high levels of attention. Third, the related but opposing idea that uncertainty may result in increased attention to stimuli (Pearce & Hall, 1980), receives less support. This suggests that hybrid models of associative learning, incorporating the mechanisms of both the Mackintosh and Pearce-Hall theories, may not be required to explain data from human participants. Rather, a simpler model, in which attention to stimuli is determined by how strongly they are associated with significant outcomes, goes a long way to account for the data on human attentional learning. The last main finding, and an exciting area for future research and theorizing, is that learned predictiveness and learned value modulate both deliberate attentional focus, and more automatic attentional capture. The automatic influence of learning on attention does not appear to fit the traditional view of attention as being either goal-directed or stimulus-driven. Rather, it suggests a new kind of “derived” attention

    Anterior Temporal Lobe Tracks the Formation of Prejudice

    Get PDF
    Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral pFC, dorsomedial pFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial pFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group

    Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability

    Full text link
    Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and inf luenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions

    The fate of redundant cues: Further analysis of the redundancy effect

    Get PDF
    Pearce, Dopson, Haselgrove, and Esber (Journal of Experimental Psychology: Animal Behavior Processes, 38, 167–179, 2012) conducted a series of experiments with rats and pigeons in which the conditioned responding elicited by two types of redundant cue was compared. One of these redundant cues was a blocked cue X from A+ AX+ training, whereas the other was cue Y from a simple discrimination BY+ CY–. Greater conditioned responding was elicited by X than by Y; we refer to this difference as the redundancy effect. To test an explanation of this effect in terms of comparator theory (Denniston, Savastano, & Miller, 2001), a single group of rats in Experiment 1 received training of the form A+ AX+ BY+ CY–, followed by an A– Y+ discrimination. Responding to the individual cues was tested both before and after the latter discrimination. In addition to a replication of the redundancy effect during the earlier test, we observed stronger responding to B than to X, both during the earlier test and, in contradiction of the theory, after the A– Y+ discrimination. In Experiment 2, a blocking group received A+ AX+, a continuous group received AX+ BX–, and a partial group received AX± BX± training. Subsequent tests with X again demonstrated the redundancy effect, but also revealed a stronger response in the partial than in the continuous group. This pattern of results is difficult to explain with error-correction theories that assume that stimuli compete for associative strength during conditioning. We suggest, instead, that the influence of a redundant cue is determined by its relationship with the event with which it is paired, and by the attention it is paid

    Dissociable learning processes, associative theory, and testimonial reviews: A comment on Smith and Church (2018

    Get PDF
    Smith and Church (Psychonomic Bulletin & Review, 25, 1565–1584 2018) present a “testimonial” review of dissociable learning processes in comparative and cognitive psychology, by which we mean they include only the portion of the available evidence that is consistent with their conclusions. For example, they conclude that learning the information-integration category-learning task with immediate feedback is implicit, but do not consider the evidence that people readily report explicit strategies in this task, nor that this task can be accommodated by accounts that make no distinction between implicit and explicit processes. They also consider some of the neuroscience relating to information-integration category learning, but do not report those aspects that are more consistent with an explicit than an implicit account. They further conclude that delay conditioning in humans is implicit, but do not report evidence that delay conditioning requires awareness; nor do they present the evidence that conditioned taste aversion, which should be explicit under their account, can be implicit. We agree with Smith and Church that it is helpful to have a clear definition of associative theory, but suggest that their definition may be unnecessarily restrictive. We propose an alternative definition of associative theory and briefly describe an experimental procedure that we think may better distinguish between associative and non-associative processes
    corecore