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Abstract 

This article presents a comprehensive survey of research concerning interactions between 

associative learning and attention in humans. Four main findings are described. First, 

attention is biased towards stimuli that predict their consequences reliably (learned 

predictiveness). This finding is consistent with the approach taken by Mackintosh (1975) in 

his attentional model of associative learning in non-human animals. Second, the strength of 

this attentional bias is modulated by the value of the outcome (learned value). That is, 

predictors of high-value outcomes receive especially high levels of attention. Third, the 

related but opposing idea that uncertainty may result in increased attention to stimuli (Pearce 

& Hall, 1980), receives less support. This suggests that hybrid models of associative learning, 

incorporating the mechanisms of both the Mackintosh and Pearce-Hall theories, may not be 

required to explain data from human participants. Rather, a simpler model, in which attention 

to stimuli is determined by how strongly they are associated with significant outcomes, goes 

a long way to account for the data on human attentional learning. The last main finding, and 

an exciting area for future research and theorizing, is that learned predictiveness and learned 

value modulate both deliberate attentional focus, and more automatic attentional capture. The 

automatic influence of learning on attention does not appear to fit the traditional view of 

attention as being either goal-directed or stimulus-driven. Rather, it suggests a new kind of 

³GHULYHG´�DWWHQWLRQ�� 
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This article examines the relationship between two central phenomena in human 

cognitive psychology, attention and learning. Attention refers to the set of perceptual and 

cognitive processes that allows us to prioritise certain events for further analysis or action; as 

such, attentional processes play a role in almost all psychological phenomena. The focus of 

this article is the way in which attention to stimuli, and hence our prioritization of those 

stimuli, can change as a result of learning about them. This issue is of central importance, 

since across areas as diverse as social interaction, decision making, reasoning, and perception, 

people often experience stimuli on multiple occasions with important consequences. The 

evidence to be reviewed in this article shows that this experience may fundamentally change 

the way in which people perceive and interact with these stimuli, which will have an impact 

on understanding behaviour in these and all other areas of psychology.  

The research conducted thus far in the domain of attentional learning ranges from the 

basic science of visual search, spatial cueing and attentional blink, through causal learning 

and the neuroscience of uncertainty to clinical applications such as the special hold that drug 

cues have over addicts. We review this literature, with a particular emphasis on the role of 

top-down and bottom-up attentional processes. We also offer a simple model to account for 

most of the current data and suggest some important avenues for future investigation. 

Interestingly, research concerning interactions between attention and learning in 

humans has (to date) proceeded largely independently in two different psychological 

WUDGLWLRQV��2QH�VWUHDP�KDV�LWV�URRWV�LQ�HDUO\�GHVFULSWLRQV�RI�µDWWHQWLRQDO¶�SKHQRPHQD�LQ�DQLPDO�

conditioning. Here, past associative learning appears to change the way in which animals 

attend to their environment, showing that attention can be conditioned just as overt responses 

(lever-pressing, salivation etc) can be conditioned. This change in attention is then revealed 

by the way it influences later learning. Such findings have since been replicated and extended 

in studies of human associative learning. A second stream has arisen more recently in the 
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perception±cognition literature, in particular in the area of visual search. This work has 

shown that learning about stimuli influences subsequent search performance involving those 

stimuli. Our aim is to demonstrate that these two research streams (associative and 

perceptual-cognitive) are mutually complementary, and that considering both provides a 

fuller picture of the relationship between attention and learning than either in isolation. 

The review is made up of four main sections. The first two sections examine models of 

attention and learning from the associative/animal conditioning tradition. One model 

proposes that predictive cues²those that signal reliable consequences²command more 

attention than non-predictive cues (Mackintosh, 1975). The second model proposes the 

opposite; that most attention is paid to cues whose consequences are uncertain (Pearce & Hall, 

1980). We find that, in humans, there is a great deal of evidence in favour of the former, 

predictiveness principle and relatively little evidence to support the latter, uncertainty 

principle. The third empirical section examines the perception-cognition literature. Here, we 

find that people pay more attention to predictors of valuable outcomes than predictors of non-

valuable outcomes. Overall, therefore, the current evidence suggests people tend to pay 

attention to cues that have reliably predicted valued outcomes in the past. Another major 

finding from this survey is that there is evidence for both top-down and bottom-up attentional 

processes with respect to both predictiveness and learned value. Hence, people deliberately 

pay attention to cues that predict high-value outcomes and, perhaps more interestingly, 

attention is also captured by these cues in a way that is outside of strategic control. The final 

section offers some theoretical analysis of the empirical evidence reviewed, and proposes a 

simple model of the roles of both predictiveness and learned value in human associative 

learning. We first provide a little historical context for the review and define its scope. 

Background and Scope of the Current Article 

The suggestion that the influence of attention might usefully be studied in the context 
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of learning was alluded to by Pavlov (1927), who noted that presenting a novel stimulus to an 

animal often elicited DQ�RULHQWLQJ�UHVSRQVH��ZKLFK�KH�WHUPHG�DQ�³LQYHVWLJDWRU\�UHIOH[´��S�����

7KH�LPSOLFDWLRQ�ZDV�WKDW�WKLV�RULHQWLQJ�UHVSRQVH�UHIOHFWHG�WKH�DQLPDO¶V�DWWHQWLRQ�WR�WKH�

stimulus, with a larger orienting response reflecting greater attention to the stimulus. An 

alternative way of measuring attention was introduced by Lashley (1929), who noted that: 

³ZKHQ�DQ\�FRPSOH[�of stimuli arouses nervous activity, that activity is immediately 

organised and certain elements or components become dominant for reaction while others 

EHFRPH�LQHIIHFWLYH«�6XFK�DQ�RUJDQLVDWLRQ�LV�LQ�SDUW�GHVFULEHG�E\« principles of attention. 

In any trial of the training series, only those components of the stimulating situation which 

are dominant in the organisation are associated. Other stimuli which excite the receptors 

DUH�QRW�DVVRFLDWHG�EHFDXVH�WKH�DQLPDO�LV�QRW�VHW�WR�UHDFW�WR�WKHP�´��S���� 

Here, Lashley argues that the extent to which a stimulus is learned about on a given trial will 

depend on the attention allocated to that stimulus. Hence, the speed with which a cue±

outcome association is learned can be taken as a measure of the attention paid to the cue. 

/DVKOH\¶V�YLHZ�ZDV�WKDW�WKH�LQIOXHQFH�RI�DWWHQWLRQ�ZDV�DOO�RU�QRQH: a stimulus could either be 

attended, in which case it would be learned about, or unattended, in which case nothing 

would be learned about it. This later gave way to a less extreme view (see Sutherland & 

Mackintosh, 1971) on which the allocation of attentional resources occurs on a continuum, 

such that differences in attention give rise to graded differences in the rate of learning about 

stimuli, otherwise referred to as the associability or conditionability of those stimuli. 

These suggestions that attention might be studied by measuring orienting to cues 

(Pavlov) or their associability (Lashley) were originally made in the context of research in 

nonhuman animals. However, directly analogous approaches have since been used to study 

the interaction between attention and learning in humans. In subsequent sections we describe 

many studies of human learning that adopt one or both of these measures of attention. 
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The Scope of the Current Survey 

As the earlier summary suggests, our interest here is in the way that learning affects 

attention; how does previous experience with a cue impact on the amount of attention paid to 

that cue later? Of course, another way in which attention and learning interact is that the 

intrinsic physical salience of a cue will affect the attention paid to it and this will, in turn, 

affect learning about the cue. Physical salience refers to the distinctiveness of a cue based on 

its physical properties; e.g., a cue may be salient based on its intensity (loudness, brightness, 

suddenness), or its dissimilarity from other items (e.g., a single red item among blue items). 

Although physical salience is not a major focus of the current article, it is worth mentioning 

briefly because experiments in this domain raise issues that will be important later.  

Perhaps unsurprisingly, very intense cues (those that can be expected to receive most 

attention) tend to be learned about more rapidly than less intense cues. Since this finding is so 

uncontroversial²very intense cues tend to be prioritised whatever the task²we will examine 

it only briefly here. For example, Beck (1963) exposed participants to pairings of a tone with 

an air-puff directed at the eye. Participants were faster to develop a conditioned blink 

response to the tone if it was loud than if it was soft. That is, D�FXH¶V associability appears to 

be influenced by its intrinsic physical salience. This illustrates an idea that will be central to 

the arguments that follow ± that associability, physical salience and psychological salience 

are intimately linked. One way to explain the observation that physically salient cues are 

learned about quickly, is to say that those stimuli are more psychologically salient: they have 

a greater impact on the perceptual system; they are more easily noticed or preferentially 

selected. It is well-known that stimulus selection can be driven by the perceptual properties of 

a stimulus ± a stimulus is more likely to capture attention if it has an abrupt onset (Yantis & 

Jonides, 1984), or bright colour (Theeuwes, 1992). Such attentional biases driven by physical 

salience might be expected to affect the speed of learning about cues. 



Human attentional learning 
 

6 
 

However, the finding that intense cues produce high responding on test does not, in 

itself, show that associability is increased by stimulus intensity. It could instead be that 

Beck¶s (1963) participants all learned at the same rate, but that responding to the loud tone 

on test was greatest because it was the most intense stimulus. That is, the effect observed may 

have been on performance, not on learning. Stronger evidence for an influence of stimulus 

intensity on learning (rather than performance) comes from the overshadowing effect in 

conditioning, first reported by Pavlov (1927) in animals and since demonstrated many times 

in humans. For example, in a study by Denton and Kruschke (2006), participants saw cues 

made up of dot patterns and were required (through trial and error) to learn the correct 

responses to those patterns (R1, R2 or R3). The patterns could be either of low physical 

salience (few dots in the display) or high salience (many dots). For one group of participants, 

a high-salience pattern in one colour (say red) was paired with a low-salience pattern in a 

second colour (say green). The correct response to this pair of patterns (known as a cue 

compound) was always response R1. On test, the low-salience green pattern was presented 

alone, and accuracy in producing response R1 was a poor 38% (chance responding was 33%). 

In contrast, for a second group of participants, the low-salience green pattern was trained with 

a low-salience red pattern. When this group was presented with the green cue on test, they 

were accurate in producing the correct R1 response (82% correct). Thus the accuracy of the 

response to exactly the same green stimulus depended on the salience of the stimulus that 

accompanied it during training. The implication is that the presence of the high-salience red 

pattern (but not the low-salience red pattern) overshadowed learning about the green pattern. 

This result follows naturally from an attentional interpretation (though other accounts 

of overshadowing have been offered, e.g., see Broomfield, McHugh & Reed, 2010; Miller & 

Matzel, 1988; Rescorla & Wagner, 1972). For the group trained with a compound of the low-

salience green pattern and high-salience red pattern, the red pattern will command attention at 
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the expense of the green pattern during training, by virtue of its greater physical salience. 

Reduced attention to the green pattern will hinder learning about its relation with the response. 

A low-salience red pattern, on the other hand, will draw less attention away from the green 

pattern, and so learning about the green pattern will be more likely. 

It is clear, then, that stimulus intensity and physical salience can influence learning. 

High intensity cues produce greater conditioned responding and prevent learning about other 

cues. These observations are not, in themselves, surprising. They do however highlight an 

issue that will be of central importance in the review presented here ± the notion of 

competition. In overshadowing, a physically salient cue competes with a less salient cue in 

learning. Competition may be an important determinant, not only of the extent to which 

learning takes place, but also the way in which learning in turn alters psychological salience, 

by modulating attention. 

Our concern in this article is the impact that associative learning, specifically, has on 

attention. There are, therefore, ways in which attention can change through experience that 

are not covered in this review. One large literature that will not be covered concerns the 

changes in attention that are brought about through mere exposure to cues, rather than the 

pairing of the cues with some outcome. For example, familiar stimuli are commonly learned 

about less quickly than novel stimuli²a phenomenon known as latent inhibition²consistent 

with a reduction in attention to those stimuli. Mere exposure can also change the way that 

stimuli are perceived (known as perceptual learning), which will have implications for later 

learning. Notably, while there do exist accounts of latent inhibition and perceptual learning 

that implicate associative learning and attention (e.g., Kruschke, 2001b; Lubow, 1989), there 

are also many alternative accounts that do not (e.g., Bouton, 1993; Miller & Matzel, 1988). 

Given the ambiguity of this research with regard to the issues addressed in the current article, 

we will not cover it here: for recent reviews of the literature on latent inhibition and 
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perceptual learning, we suggest Holmes and Harris (2010) and Mitchell and Hall (2014) 

respectively. Lastly, ideas related to those presented here also appear in other psychological 

disciplines that share some similarity with associative learning, but these other disciplines 

will not receive detailed treatment here. In particular, an important role for attention (like that 

described in the section on predictiveness next) has been identified in work on human 

categorization (see e.g., George & Kruschke, 2012 for review).  

Having described what the current review is not about, we now consider the scope of 

the first two major empirical sections. These two sections examine the ways in which 

attention changes as a consequence of the predictiveness of cues. A predictive cue is one that 

is a consistent and reliable indicator of the events that follow it, whether these events refer to 

presence of an outcome (e.g., electric shock) or its absence (no shock). A nonpredictive cue is 

one that provides no information regarding the events that follow it (e.g., a stimulus that is 

sometimes followed by shock, and sometimes by no shock). Two (contrasting) views of the 

relationship between predictiveness and attention have been dominant in the associative 

learning literature. We refer to these as the predictiveness principle (attention increases 

towards cues when their outcomes are predicted) and the uncertainty principle (attention 

increases towards cues when their outcomes are surprising). 

These principles are exemplified by theories proposed by Mackintosh (1975) and 

Pearce and Hall (1980) respectively. In searching for literature relating to these principles, we 

searched the ISI Web of Science database on 10/10/2015 for all articles in the fields of 

psychology, neuroscience, psychiatry, behavioral sciences and multidisciplinary sciences 

citing either of these key papers, and containing at least one of these keywords (where * 

denotes a wild card, such that associab
�ZLOO�SLFN�XS�µassociability¶�DQG�µassociable¶�: 

attention*, predict*, associab*, relevan*, irrelevan*, certain*, uncertain*. The resulting 828 

hits were then reviewed for content and for references to further literature (28 extra articles 
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found), yielding a total of 143 articles relevant to the current discussion (marked as results of 

Search 1 in the reference list) which we cover in the sections to follow. Reasons for exclusion 

were: (1) The article did not present novel empirical data (articles in this category were 

reviews or modelling papers) ± 137 articles; (2) The article described data from nonhuman 

animals only, whereas our focus is on humans ± 366 articles; (3) The article presented data 

from humans but these data did not bear on the relationship between learning and attention 

(most articles in this category made only a passing reference to one of the key papers as an 

example of a theory of learning) ± 171 articles; (4) The article concerned effects of mere 

exposure (latent inhibition or perceptual learning), which lie outside the scope of the current 

article as noted earlier ± 39 articles. The first main section of this review looks at the 

evidence for the predictiveness principle in the human learning literature.  

Predictiveness and Attention 

One idea that has been dominant in the literature is that predictive stimuli²those with 

meaningful consequences²PLJKW�µVWDQG�RXW¶��:LOOLDP�James (1890/1983) introduced the 

concept of derived attention��D�IRUP�RI�DWWHQWLRQ�WR�D�VWLPXOXV�WKDW�³RZHV�LWV�LQWHUHVW�WR�

association with some other LPPHGLDWHO\�LQWHUHVWLQJ�WKLQJ´��S����� Consistent with this idea, 

the predictiveness principle refers to the idea that cues become more psychologically salient 

as a result of their predictiveness with respect to important outcomes; more attention will be 

allocated to predictive cues than to nonpredictive cues. 

The archetypal model of associative learning that incorporates the predictiveness 

principle, and its effect on associability, is that proposed by Mackintosh (1975), though other 

variants have been proposed before and since (e.g., Kruschke, 1992, 2001b, 2006; Lovejoy, 

1968; Schmajuk & Moore, 1985; Sutherland & Mackintosh, 1971; Trabasso & Bower, 1968; 

Zeaman & House, 1963). Hence, when we talk of the Mackintosh model below we are 



Human attentional learning 
 

10 
 

actually referring to a broad class of theories that embody the predictiveness principle. 

Behavioural Evidence for the Predictiveness Principle 

In this section we review studies that have provided evidence consistent with the 

predictiveness principle embodied by the Mackintosh model. These studies have examined 

three closely related phenomena of associative learning: µVLPSOH¶�learned irrelevance, the 

intradimensional±extradimensional shift effect, and the learned predictiveness effect. We will 

see that there is good evidence for the idea that predictive cues attract more attention than 

non-predictive cues. Perhaps the strongest evidence is provided by the learned predictiveness 

effect (the third of the lines of evidence presented below). Here, previously predictive cues 

are learned about more quickly than previously non-predictive cues, and they also command 

more attention as measured by tracking eye-gaze. Following this discussion, we look more 

closely at learned predictiveness and ask whether the effect is the consequence of deliberate 

top-down attentional processes, or more automatic, bottom-up attentional capture. 

Simple learned irrelevance.  The simplest approach borrows directly from the learned 

irrelevance procedure originally developed by animal researchers (e.g., Mackintosh & Little, 

1969). In a human version of this procedure (Myers, Oliver, Warren & Gluck, 2000), 

participants had to predict, on each trial, whether an outcome would occur (a rabbit appearing 

XQGHU�D�PDJLFLDQ¶V�KDW���During training phase 1, for participants in a pre-exposed group, a 

red or green balloon was also presented on each trial, but the colour of this balloon was 

unrelated to whether the outcome occurred, which was randomly determined on each trial. 

That is, the colour of the balloon was non-predictive of the outcome. Then, in training phase 

2, the colour of the balloon became predictive (e.g., whenever the balloon was red the rabbit 

appeared; whenever it was green no rabbit appeared). Participants who had been pre-exposed 

to the non-predictive balloon were slower to learn this colour±outcome relationship in phase 
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2 than control participants who had not been exposed to the coloured balloon during phase 1. 

This finding has been well replicated (Myers, Warren, et al., 2000; Orosz, Feldon, Gal, 

Simon & Cattapan-Ludewig, 2007; Orosz, Feldon, Gal, Simon & Cattapan-Ludewig, 2008; 

Orosz et al., 2011). 

This finding follows naturally from the predictiveness principle. On this view, 

experience that the coloured balloon is non-predictive (i.e., irrelevant) with regard to the 

outcome during phase 1 results in a reduction in attention to this feature. If participants are 

paying less attention to the balloon, they will naturally be slower to learn its significance 

when it becomes relevant during phase 2; i.e., its associability will be reduced. In essence, 

this account proposes that pre-exposed participants learned to ignore the irrelevant balloon 

during phase 1. :H�UHIHU�WR�WKLV�HIIHFW�DV�µVLPSOH¶�OHDUQHG�LUUHOHYDQFH�WR�FRQWUDVW�LW�ZLWK�PRUH�

complex examples discussed in the following sections. 

However, the support for the predictiveness principle offered by this simple learned 

irrelevance effect is equivocal, because it is open to other interpretations. Firstly, the pre-

exposed and non-pre-exposed (control) group differ not only in their experience of the 

predictiveness of the coloured balloon, but also in terms of its novelty. So the difference in 

learning of the colour±outcome relationship could stem from the fact that, for the control 

group, the coloured balloon is novel at the start of phase 2, while for the pre-exposed group it 

is not (cf. Bonardi & Hall, 1996). Moreover, the objective statistical relationship between the 

colours and the outcome differs between the two groups. For the control group, every 

presentation of the red balloon is paired with the rabbit. In contrast, the pre-exposed group 

have previously experienced trials on which the red balloon was not paired with the rabbit 

(during phase 1). Hence the overall conditional probability of the outcome given the red 

balloon is lower in the pre-exposed group during phase 2, and this may be why people in this 

group perceive the colour±outcome relationship as weaker (see Schmidt-Hansen & Le Pelley, 
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2012). Notably, neither of these accounts make any appeal to changes in attention as a result 

of learning about predictiveness. Stronger evidence for the predictiveness principle comes 

from studies that control more carefully for such alternative explanations. 

The intradimensional±extradimensional shift effect.  The studies described above 

investigate how previous experience of the relationship between a cue and an outcome 

influences subsequent learning about that same relationship. Another approach has studied 

how prior experience influences learning of a new cue±outcome relationship. An example is 

provided by studies of the intradimensional±extradimensional shift (ID-ED shift) effect.1 For 

example, in the study by Eimas (1966), children learned to discriminate between cues that 

varied on two dimensions: colour (red or green) and shape (circle or star). Each trial 

presented a pair of cues that shared no features (i.e., the pair was either red circle and green 

star, or red star and green circle); children tried WR�SLFN�WKH�µFRUUHFW¶�cue, behind which was a 

winning chip. During the first discrimination task (D1), one of the dimensions predicted the 

solution of the discrimination. For group IDS, colour was the predictive dimension; e.g., the 

chip may always be behind the red cue, and never behind the green cue. Shape was 

nonpredictive, so across trials the chip was equally likely to be behind the circle or the star. In 

contrast, for group EDS shape was the predictive dimension (e.g., the chip was always behind 

the star and never behind the circle) and colour was nonpredictive. 

Following training on discrimination D1, children were shifted to a new discrimination, 

D2, in which the cues contained new values on each dimension (colours were now blue and 

yellow, shapes were triangle and diamond). For both groups, colour was predictive and shape 

nonpredictive for dimension D2. So for group IDS, the predictive dimension for 

discrimination D2 was the same as that which was predictive for discrimination D1: these 

children experienced an intradimensional shift. For group EDS, the predictive dimension for 

D2 (colour) had been nonpredictive for D1: these children experienced an extradimensional 
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shift. Eimas (1966) found significantly faster learning of discrimination D2 by group IDS 

than group EDS. In other words, group IDS learned that colour was predictive in the first 

phase, which gave them an advantage in the second phase when colour was again predictive. 

The ID-ED shift effect emerges naturally from the predictiveness principle; the idea 

that more attention is allocated to predictive than nonpredictive stimuli. For group IDS, 

training on discrimination D1 will result in greater attention to (and hence associability of) 

the predictive dimension of colour than to the nonpredictive shape. This will aid learning of 

discrimination D2, since D2 also relies on learning about colour, while shape provides no 

useful information. In contrast, for group EDS, training on D1 will result in lower attention to 

colour than to shape, which will impair learning about colour on discrimination D2. So 

overall, this account correctly anticipates faster learning of D2 in group IDS than group EDS. 

The ID-ED shift procedure overcomes the problems with the simple learned irrelevance 

procedure in the previous section. Group IDS and EDS encounter the different stimuli exactly 

the same number of times, so stimulus novelty is equated in the two groups. Moreover, since 

all of the features are novel in discrimination D2 (none of blue, yellow, triangle, or diamond 

was experienced in D1), there can be no direct carryover of stimulus±outcome learning from 

D1 to D2. In other words, the objective stimulus±outcome relationships during D2 are 

identical for the two groups. The groups differ only in their prior experience of the 

predictiveness of the different dimensions (D1 training), and so this must drive the difference 

in acquisition of D2 ± as anticipated by the predictiveness principle. 

The ID-ED shift effect is consistent with the idea of greater attention to predictive cues 

than nonpredictive cues. A further question arises as to whether experience of predictiveness 

increases attention to cues (learned relevance) or nonpredictiveness decreases attention 

(learned irrelevance), or both. These possibilities can be tested by comparing previously 

predictive or nonpredictive dimensions with novel dimensions which were not experienced 
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during D1. Studies taking this approach have revealed mixed results: some have found 

stronger evidence for learned relevance than learned irrelevance (Lawrence, Sahakian, 

Rogers, Hodges & Robbins, 1999; Owen et al., 1993), others have found stronger evidence 

for learned irrelevance than learned relevance (Cools, Rogers, Barker & Robbins, 2010; 

Gauntlett-Gilbert, Roberts & Brown, 1999; Maes et al., 2004), and one study found similar 

effects of both (Goldstone & Steyvers, 2001). Moreover, there are limitations to these 

datasets and to this approach more generally. Firstly, only Goldstone and Steyvers and Maes 

et al. provide statistics that allow the size of the two effects to be compared; for the other 

studies, the patterns are numerical but not necessarily statistically significant. Secondly, 

Owens et al. and Lawrence et al. did not equate prior exposure to predictive and 

nonpredictive dimensions. Finally, the comparison of predictive or nonpredictive dimensions 

against a novel (i.e., unfamiliar) dimension in discrimination D2 is problematic in principle; it 

raises the possibility that a difference in familiarity (rather than predictiveness) may influence 

the rate of learning about different dimensions during D2. As such, the extent to which the 

overall ID-ED shift effect reflects learned relevance or irrelevance remains unclear, and it 

may not be possible to resolve this issue for certain. As a consequence, for the remainder of 

this article we use the term learned predictiveness without making any specific commitment 

to whether this reflects changes with regard to predictive stimuli, nonpredictive stimuli, or 

both. 

Finally in this section we note an issue regarding the level at which attention operates. 

The ID-ED shift effect shows that learning can influence the attention that is paid to a 

stimulus dimension (e.g. colour, shape) (see also Goldstone, 1994; Nosofsky, Gluck, Palmeri, 

McKinley & Glauthier, 1994). That is, experience of the predictiveness of certain feature-

values on the dimension during discrimination D1 (e.g., red, green) has an effect on attention 

to new features from that same dimension in discrimination D2 (blue, yellow). One possible 
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interpretation of this is that the effect of learning on attention operates at the level of 

dimensions; learning that red and green are predictive results in greater attention to the 

dimension of colour (for examples of models implementing this approach, see Kruschke, 

1992; Nosofsky, 1986; Sutherland & Mackintosh, 1971). The alternative view, embodied by 

0DFNLQWRVK¶V��������model, has attention operating at the level of individual features; 

learning that red and green are predictive results in greater attention to red and green (cf. 

Kalish & Kruschke, 2000). In order to account for the ID-ED shift effect (where the features 

change between training and transfer discriminations) Mackintosh suggested that learned 

attention could generalize between features based on their similarity, and this similarity will 

typically be greater for features belonging to the same dimension (red and yellow) than 

features belonging to different dimensions (red and triangle). 

The ID-ED shift effect is amenable to either of these accounts ± attention at the level of 

dimensions, or features. Other phenomena are less ambiguous, however; in many cases below 

(including the next example) all cues come from the same dimension, and participants must 

learn which particular features on that dimension are predictive and which are nonpredictive. 

In these examples it is clear that variations in learned attention apply to individual features, 

and not to dimensions. 

The learned predictiveness effect.  The ID-ED shift effect prevents direct carryover of 

stimulus±outcome learning from D1 to D2 by changing the cues between the two phases (e.g., 

colours are red and green in D1, but blue and yellow in D2). An alternative option is to 

change the outcomes between the two phases, and this is the approach taken in studies of the 

so-called learned predictiveness effect, developed by Le Pelley and McLaren (2003) based on 

a procedure originally used by Lochmann and Wills (2003). 

On each trial of /H�3HOOH\�	�0F/DUHQ¶V�(2003) study, participants were told the foods 

eaten by a fictitious patient, and had to predict what sort of allergic reaction the patient would 
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suffer as a result. Immediate feedback allowed participants to learn the relationships between 

foods (cues) and different types of allergic reactions (outcomes). In training Phase 1, 

participants learned about patient µMr X¶, who suffered from either sweating or dizziness. 

During this phase, certain cues (e.g., apple) consistently predicted which reaction would 

occur. Others (e.g., banana) were paired equally often with sweating or dizziness and so were 

nonpredictive. Training Phase 2 introduced a new patient (µMr Y¶) who ate the same foods as 

Mr X but suffered different types of reactions (nausea and itching). Specifically, each trial 

featured a pair of foods, one of which had previously been predictive for Mr X, and the other 

of which had been nonpredictive. Thus, using the examples above, participants might 

experience trials on which Mr Y ate apples and bananas, and suffered nausea as a result. 

Crucially, during Phase 2, all cues were now equally predictive of the outcomes with which 

they were paired. So both apples and bananas predicted perfectly that nausea would occur. 

Despite this, a final test revealed that participants had learned more about the previously 

predictive cues than the previously nonpredictive cues; e.g., they learned the relationship 

between apples and nausea more strongly than the relationship between bananas and nausea.  

This finding suggests that the predictiveness of cues established in Phase 1 produced a 

persistent bias in the associability of those cues that carried over to, and influenced learning 

in, Phase 2. The advantage for predictive cues over nonpredictive cues is consistent with the 

idea that experience of predictiveness influences attention in the manner suggested by the 

predictiveness principle. And like the ID-ED shift effect, the learned predictiveness effect is 

not confounded with stimulus familiarity (since all cues are presented the same number of 

times) or differences in the objective cue±outcome relationships (since all cues are equally 

predictive of the outcomes with which they are paired in Phase 2). 

This learned predictiveness effect demonstrated by changing outcomes between two 

phases of training has been replicated many times.2 Extensions of the basic procedure suggest 
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that: (1) Associability can be influenced by absolute predictiveness (how well do apples 

predict sweating?) rather than a comparison of relative predictiveness (do apples predict 

sweating better than bananas do?) (Beesley & Le Pelley, 2010; Kattner, 2015; Le Pelley, 

Turnbull, et al., 2010; Livesey et al., 2011). (2) The influence of predictiveness can be 

contextually mediated. Suppose that apples are predictive and bananas are nonpredictive in 

context C1 (e.g., a particular grocery), but apples are nonpredictive and bananas predictive in 

context C2. Under these circumstances, people will learn new cue±outcome relationships 

faster for apples than bananas if these are encountered in context C1, but will learn faster 

about bananas than apples in context C2 (Lucke et al., 2013; Uengoer & Lachnit, 2012; 

Uengoer, Lachnit, Lotz, Koenig & Pearce, 2013: see George & Kruschke, 2012, and 

Kruschke, 1996, for similar findings from an ID-ED shift procedure). These findings suggest 

that, under some circumstances, attention can operate at the level of cue compounds, e.g., the 

configuration of apples and context C1 is predictive, whereas the configuration of bananas 

and context C1 is nonpredictive, so the former configuration receives more attention than the 

latter (see George & Pearce, 1999, p372). 

Beyond Associability: Evidence from Eye Gaze 

7KH�VWXGLHV�FLWHG�DERYH�IROORZ�/DVKOH\¶V��������OHDG�LQ�XVLQJ�WKH�DVVRFLDELOLW\�RI�D�FXH�DV�DQ�

index of the attention. This focus on associability reflects the origins of studies of learned 

predictiveness in the animal conditioning literature; conditioning researchers are practised in 

measuring learning, and so they naturally use rate of learning as a proxy for attention. 

However, the focus on associability separates this literature from studies of attention as it is 

typically understood in the perceptual±cognitive tradition. So we might ask, does learning 

about predictiveness influence only the associability of cues, or does it also influence other 

aspects of stimulus processing that are more typically taken as evidence of changes in 

attention? Several recent studies have addressed this question, and have shown that 
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predictiveness modulates stimulus processing in a way that is characteristic of attention as it 

is understood in the wider perceptual±cognitive literature. Here, we shall first briefly consider 

studies that have used eye-tracking. In the next section, where we consider the top-

down/bottom-up nature of learned attentional biases, we will cover other methods of 

assessing attention based on the attentional blink and spatial cueing. 

One of the most obvious features of visual attention is that it tends to coincide with 

where our eyes are looking; indeed, it is well-established that an eye movement to a given 

location is always preceded by a spatial shift of attention to that location (Deubel & 

Schneider, 1996). Attention indexed by eye movements is known as overt attention. There 

now exist several studies of the relationship between overt attention and predictiveness. For 

example, Le Pelley et al. (2011) WUDFNHG�SDUWLFLSDQWV¶�H\H�PRYHPHQWV�DV�WKH\�SHUIRUPHG�WKH�

learned predictiveness task of Le Pelley and McLaren (2003). During training Phase 1, 

participants spent longer looking at cues that predicted the outcome on each trial than cues 

that were nonpredictive. Moreover, this bias in eye gaze towards cues that had been 

predictive in Phase 1 persisted during training Phase 2, in which all cues were now equally 

predictive of the outcomes with which they were paired. So not only was  learning during 

Phase 2 influenced by SDUWLFLSDQWV¶�prior experience of predictiveness, their overt attention 

was too. The finding of greater eye gaze to predictive than non-predictive cues has now been 

replicated many times (Beesley, Nguyen, Pearson & Le Pelley, 2015; Haselgrove et al., 2015; 

Hoffman & Rehder, 2010; Le Pelley et al., 2011; Le Pelley, Mitchell & Johnson, 2013; 

Mitchell et al., 2012; Rehder & Hoffman, 2005a; 2005b; for related evidence from 

electroencephalography, see also Luque, Morís, Rushby & Le Pelley, 2015; Welham & Wills, 

2011). This evidence, together with the earlier learned predictiveness findings, firmly 

establishes that predictive cues are higher than non-predictive cues in both associability and 

overt attention. But what is the nature of this attentional bias? In the next section we address 



Human attentional learning 
 

19 
 

perhaps the most important question of this kind; are participants deliberately attending to 

previously predictive cues, or is attention being captured in an involuntary fashion? 

Controlled and Automatic Attentional Processes 

The preceding sections have described findings demonstrating that predictive stimuli are 

learned about more rapidly, and receive more overt attention, than nonpredictive stimuli. 

These findings are consistent with the predictiveness principle, and strongly implicate 

attentional processes in the bias towards learning about previously predictive stimuli. But 

how do these attentional processes operate? Some aspects of the data seem straightforward to 

explain. Take, for example, the learned predictiveness task of Le Pelley and McLaren (2003). 

Recall that, in Phase 1, one of the foods presented on each trial was always paired with the 

same type of allergic reaction (e.g., apple was always paired with nausea), whereas the other 

food was equally paired with both types of reaction (e.g., banana was sometimes paired with 

nausea and sometimes with sweating). So to respond correctly, participants need to identify 

the predictive cue on each trial, while the nonpredictive cue should be ignored because it does 

not allow correct predictions. Of course, therefore, participants will spend longer looking at 

the predictive cues in order to make accurate predictions. The question then is, why does the 

attentional bias persist into Phase 2, when all cues are equally predictive? 

One possibility is that the predictiveness effect is a top-down, controlled attentional 

ELDV��3DUWLFLSDQWV�PD\�UHDVRQ�WKDW�³Apples were predictive in Phase 1 ± perhaps they are also 

important in Phase �´��7KDW�LV, the bias towards previously-predictive cues in Phase 2 is a 

conscious, top-down decision to look for cues that participants have learned are important in 

the current context. The alternative is that learning about predictiveness influences attention 

in a more automatic, bottom-up way ± changing the extent to which cues µgrab¶ attention in a 

ZD\�WKDW�LV�RXWVLGH�RI�SHRSOH¶V�VWUDWHJLF�FRQWURO. We shall consider these two options in turn. 
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Controlled attention.  Mitchell et al. (2012) investigated whether top-down attentional 

processes can influence the learned predictiveness effect. Between Phases 1 and 2, 

participants in the Change group were instructed that the stimuli that had determined the 

outcome in Phase 1 (the predictive cues, e.g. apples) were unlikely to determine the outcome 

in Phase 2. If the learned predictiveness effect was sensitive to top-down attentional 

processes, these instructions should have a profound effect on learning in Phase 2: 

participants might be expected to switch attention from the previously predictive cues to 

previously nonpredictive cues (such as bananas). In the Continuity group, participants were 

told that the predictive cues in Phase 1 were also likely to determine the outcome in Phase 2. 

In this group, the standard learned predictiveness effect was expected. 

The results suggested that the learned predictiveness effect could indeed be modulated 

by top-down control. The reversal instructions given to the Change group produced a learned 

predictiveness effect in the opposite direction to that observed in the Continuity group. 

During Phase 2, participants in the Change group learned more about cues that had been 

nonpredictive in Phase 1, and paid greater overt attention to these cues (measured using eye-

tracking), compared to those that had been predictive in Phase 1. This finding shows that 

participants in the Change group were aware of the predictive status of cues in Phase 1 and 

were able to use that knowledge to strategically allocate their attention to previously non-

predictive cues in Phase 2. Furthermore, Mitchell et al. (2012) saw no evidence for any 

automatic bias towards previously predictive cues; there was no evidence for any overall bias 

across both groups towards previously predictive cues. It should be noted, however, that 

subsequent studies using the same approach have found that, although instructions do have a 

profound influence on the effect, there can also be a residual predictiveness effect (a bias 

towards previously predictive cues when averaged across both groups) that survives reversal 

instructions (Don & Livesey, 2015; Shone et al., 2015). This residual bias could reflect a 
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bottom-up contribution to the learned predictiveness effect that is resistant to the influence of 

instructions on strategic allocation of attention. However, the validity of this conclusion rests 

on the assumption that the instructions given to the Change and Continuity groups were 

equally effective in producing top-down changes in attention, but this may not be the case. In 

particular, a residual predictiveness effect would be observed if some participants in group 

Change, for whatever reason, did not make use of the reversal instructions and instead 

assumed continuity between the two phases. 

Taking these data together, then, there is strong evidence that knowledge of 

predictiveness can influence attention in a controlled, top-down fashion. There is also 

evidence (albeit equivocal) consistent with the existence of another, more automatic process 

that is resistant to instructional manipulations. The next section describes further studies 

providing clearer evidence for an automatic influence of predictiveness on attention (further 

evidence for automatic processes will be presented in the section on learned value below).  

Automatic attention.  Studies investigating the possibility that predictiveness training 

can influence automatic attentional capture have used procedures based on the attentional 

blink effect (Glautier & Shih, 2015; Livesey, Harris & Harris, 2009), and spatial cueing 

(Haselgrove et al., 2015; Le Pelley, Vadillo & Luque, 2013). We review these two lines of 

evidence in turn. 

Attentional blink.  In the attentional blink paradigm, participants must identify two 

targets in a rapid sequence of visual stimuli appearing in the same location on a screen. The 

effect is called the attentional blink because identification of the second of the two targets is 

often impaired if it appears 200-500ms after presentation of the first target. This effect is 

widely assumed to reflect attentional limitations during encoding that restrict perceptual 

awareness of targets (Raymond, Shapiro & Arnell, 1992). Consistent with this interpretation, 

the attentional blink is reduced for targets that are higher in perceptual salience (e.g., letters 
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among numbers, Chun & Potter, 1995), emotional salience (e.g., negatively valenced words, 

Anderson & Phelps, 2001), or semantic salience (e.g., one's own name, Shapiro, Caldwell & 

Sorensen, 1997), and which are hence more likely to capture attention. 

Livesey et al. (2009: see Glautier & Shih, 2015, for a replication) demonstrated that the 

susceptibility of stimuli to the attentional blink varies as a function of predictiveness. On each 

trial participants saw a rapidly presented series of letters, and then had to make either a left or 

right button-press response as quickly as possible (Figure 1). The appearance of certain target 

letters (predictive cues) in the series predicted which response (left or right) participants 

would be required to make. Other target letters (nonpredictive cues) did not predict the 

correct response. In a separate, subsequent test phase, participants showed an advantage in 

detecting previously-predictive target letters in the rapidly-presented letter streams, relative to 

previously-nonpredictive targets. Detection of the predictive cues was, therefore, less 

impaired by the attentional blink than was detection of the nonpredictive cues. 

This finding is certainly consistent with the idea that associative learning effectively 

increases the salience of (and extent of attentional capture by) predictive stimuli, thereby 

increasing their detectability. Importantly, the participant¶s task was to detect all targets 

presented during the test phase. Thus, there was no obvious advantage to the participant in 

biasing attention towards one stimulus and away from another; the implication is that the bias 

observed was automatic and not under the SDUWLFLSDQW¶V�control. 

Spatial cueing.  People are faster to respond to events that occur in locations to which 

they are attending. This idea is the basis of the spatial cueing task (Posner, 1980; Posner, 

Nissen & Ogden, 1978), developed to measure shifts of visual attention. Recent experiments 

have used a variant of this task to investigate the possibility of an automatic attentional bias 

towards the location in which predictive stimuli appear (Le Pelley, Vadillo, et al., 2013). On 

each trial of an initial categorization phase, two stimuli appeared: a green square (which 
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could take one of two different shades of green) and a set of oblique lines (which could take 

one of two different orientations). Participants categorized this stimulus pair into one of two 

categories, with immediate corrective feedback provided on each trial. For half of the 

participants, the shade of green predicted category membership and the orientation of the 

lines was nonpredictive. For the remaining participants, the reverse was true. 

A subsequent test phase used a spatial cueing procedure to assess whether the 

categorization task produced an attentional bias towards predictive cues and away from 

nonpredictive cues. On each trial a pair of stimuli (a green square and set of oblique lines), 

appeared on opposite sides of the screen for 150 ms. These stimuli then disappeared, and 

after 200 ms a triangle (the probe) could appear in the location formerly occupied by one of 

them. Thus the stimulus-onset asynchrony (SOA) between the cueing stimuli and the probe 

was 350 ms. This probe was equally likely to appear in either location. PDUWLFLSDQWV¶�WDVN�ZDV�

to respond to the appearance of the probe as rapidly as possible by pressing a single key. 

Responses to the probe were faster when it appeared in the location previously 

occupied by the predictive cue than when it appeared in the location of the nonpredictive cue 

(a pattern recently replicated by Haselgrove et al., 2015). This pattern again indicates an 

attentional advantage for the predictive cue, consistent with the predictiveness principle. It 

suggests WKDW�WKH�SUHGLFWLYH�VWLPXOXV�FDSWXUHG�SDUWLFLSDQWV¶�VSDWLDO�DWWHQWLRQ�DQG�KHQFH�VSHG�

responses to events occurring in that location; in this case, the onset of the probe. This 

attentional capture occurred even though (1) it was not required by the task, (2) it was not 

adaptive with regard to that task, and (3) the short SOA meant that there was little time for 

participants to consciously process and respond to the stimuli on each test trial.  

Le Pelley, Vadillo, et al. (2013) also demonstrated that providing more time for 

SDUWLFLSDQWV�WR�FRQVFLRXVO\�SURFHVV�WKH�VWLPXOL�E\�LQFUHDVLQJ�WKH�62$�RQ�WHVW�WULDOV�WR�

1000 PV�VLJQLILFDQWO\�weakened the influence of predictiveness on probe responding. This 



Human attentional learning 
 

24 
 

finding suggests that the pattern observed at short SOA is not a result of conscious, controlled 

processing but instead reflects a rapid and automatic effect of predictiveness on attentional 

capture. In contrast, a long SOA provides sufficient time for participants to use controlled 

processes to correct for the automatic attentional orienting caused by presentation of the 

stimuli, returning attention to the centre of the display (cf. Klauer, Roßnagel & Musch, 1997). 

These findings represent strong evidence for a non-volitional component in the learned 

attentional bias towards previously predictive cues. 

The studies reviewed in this section suggest that learning about predictiveness can 

influence the extent to which cues will subsequently command attention. This is true even 

when attending to those cues is not required by the task that participants are performing (as in 

the cueing task of Le Pelley, Vadillo, et al., 2013), or when there is no advantage to be gained 

by biasing attention towards predictive cues (as in the attentional blink task of Livesey et al., 

2009). The implication is that the influence of predictiveness on attention may, at least in part, 

reflect a change in the likelihood that cues will automatically capture attention, regardless of 

D�SHUVRQ¶V�JRDOV�RU�LQWHQWLRQV. We shall see later that this evidence for an automatic effect of 

predictiveness on attention is complemented by a larger body of evidence demonstrating that 

learning about value can also influence automatic attentional capture. 

Summary: The Predictiveness Principle Affects Top-Down and Bottom-Up Attention 

In this section on the predictiveness principle, we have seen that predictiveness exerts an 

influence on many different measures of stimulus selection, not merely learning rate ± these 

include eye gaze (overt attention), spatial cueing, and susceptibility to the attentional blink. 

So models in which the effect of predictiveness is limited to an influence on associability 

(e.g., Mackintosh, 1975) do not go far enough. Instead it seems that learning about 

predictiveness exerts a more general effect on the psychological salience of stimuli that 

influences many aspects of their processing; not only how they are learned about, but how 
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they perceived and demand responses (in terms of orienting) in their own right. 

More generally, the data reviewed here support the idea that attention can be learned 

just as other behavioural responses are learned. These studies indicate that the attentional bias 

towards previously predictive stimuli is multiply determined. In part it seems likely to be the 

consequence of deliberate and controlled (top-down) attention toward cues deemed important 

as a consequence of their history. However, there is also evidence that predictiveness 

SURGXFHV�DQ�DWWHQWLRQDO�ELDV�WKDW�LV�DXWRPDWLF�DQG�RXWVLGH�RI�SDUWLFLSDQWV¶�FRQWURO� 

In the next section we consider a quite different model of conditioned attention, also 

developed in the context of animal learning, proposed by Pearce & Hall (1980). Here we ask 

whether people, at least under some circumstances, pay particular attention to cues that fail to 

predict important outcomes ± about which they are uncertain. 

Uncertainty and Attention 

The Pearce±Hall Model 

In the previous section, we described studies in which better predictors of outcomes demand 

more attention. However, Dickinson (1980) has argued that it actually makes little sense to 

continue to devote the majority of learning resources to those cues whose consequences are 

already well-known. Rather, the most efficient approach is for attentional resources to be 

focussed on cues whose predictive status is currently unknown, thus promoting rapid learning 

about the true significance of those cues. This notion was formalized in an alternative form of 

attentional learning theory suggested by Pearce and Hall (1980). At the heart of this theory is 

the suggestion that attention will be greatest (and hence learning will be most rapid) for 

stimuli whose consequences are poorly predicted and hence surprising. Following Griffiths, 

Johnson and Mitchell (2011), we term this the uncertainty principle, since it anticipates 

greater attention to cues whose predictive status is uncertain. On the surface at least, this 
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suggestion is at odds with the predictiveness principle outlined earlier, which holds that 

attention will be greatest for stimuli that predict their consequences most accurately. 

In rats, there is evidence in support of both the uncertainty principle and the 

predictiveness principle (for reviews, see Le Pelley, 2004; Pearce & Mackintosh, 2010). This 

pattern of findings has motivated the development of hybrid theories of attentional learning, 

which attempt (in various ways) to reconcile and combine both the predictiveness and 

uncertainty principles (George & Pearce, 2012; Le Pelley, 2004, 2010; Pearce, George & 

Redhead, 1998; Pearce & Mackintosh, 2010). We have already seen ample support in human 

learning for the predictiveness principle. If hybrid models are to have any relevance to human 

learning and attention, there must also be strong evidence for the Pearce-Hall PRGHO¶V�

uncertainty principle in humans.  

Evidence for the Uncertainty Principle in Humans 

There are three lines of research that have attempted to test the uncertainly principle in 

humans. Firstly, over the past 15 years, neuroscientists have shown a great deal of interest in 

the notion of uncertainty. We review attempts to locate the brain areas in which uncertainty is 

processed. Our conclusion is that current neuroscientific evidence for the uncertainty 

principle²specifically that attention goes to cues about which people are uncertain²is not at 

all strong. Secondly, a model-fitting approach has been taken. Some studies have found that 

models in which attention to cues is variable, and determined by uncertainty, fit empirical 

learning data better than models in which attention is fixed. However, findings are mixed and 

not all possible models (e.g., predictiveness-based models) have been tested. The evidence 

for the uncertainty principle from model-fitting studies is again, therefore, not compelling. 

Finally, some experimental tests of the qualitative predictions of the Pearce-Hall model have 

shown evidence for the uncertainty principle. Unfortunately, these findings have not proven 

to be robust to replication. Hence, overall, our conclusion is that the uncertainty principle 
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does not currently receive strong empirical support from studies of human learning. However, 

this lack of support may reflect the possibility that existing experiments are not always 

optimally designed to detect an influence of uncertainty on attention in humans. Towards the 

end of this section we consider ways in which future studies might be parameterized so as to 

EH�PRVW�VHQVLWLYH�WR�GHWHFWLQJ�DQ�LQIOXHQFH�RI�XQFHUWDLQW\�RQ�µDWWHQWLRQDO�H[SORUDWLRQ¶� 

Encoding of unsigned prediction error in the brain.  Imagine pairing a cue, A 

(which might be a light, or a tone, etc) with an outcome (which might be food, money, shock 

etc). Prediction error describes the discrepancy between the magnitude of the outcome that 

actually occurs (usually represented as �) and the magnitude of the outcome that is predicted 

by cue A (usually represented as VA). Hence the prediction error is given by (� ± VA). If the 

outcome is under-predicted (so � > VA), prediction error will be positive; if the outcome is 

over-predicted (� < VA), prediction error will be negative. More generally, the absolute value 

of the prediction error, |� ± VA|, describes the accuracy with which cue A predicts the 

outcome. If the outcome on a given trial is well-predicted by cue A, the absolute prediction 

error will be small; if the outcome is poorly predicted by A and hence surprising (either over- 

or under-predicted) the absolute prediction error will be large. Hence this unsigned prediction 

error (uPE) provides an index of the predictive uncertainty associated with cue A. There are 

(at least) three critical aspects that uPEs must fulfil if the uncertainty principle is to be 

supported: (1) uPEs produced by outcomes must be encoded somewhere in the brain; (2) 

WKHVH�X3(V�PXVW�WKHQ�EH�µDWWDFKHG¶�WR�FXHV��DQG�����WKLV�PXVW�UHVXOW�LQ�a change in attention to 

these cues. We consider these aspects below. 

Several fMRI studies with humans have found brain regions whose activity correlates 

across trials with uPE, with greater activity generated by presentation of surprising outcomes 

than predicted outcomes. That said, the exact region implicated varies between studies: either 

amygdala (Boll, Gamer, Gluth, Finsterbusch & Buchel, 2013; but see Prevost, McCabe, 
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Jessup, Bossaerts & O'Doherty, 2011, for a null finding), hippocampus (Ploghaus et al., 2000; 

Vanni-Mercier, Mauguiere, Isnard & Dreher, 2009), substantia nigra (D'Ardenne, Lohrenz, 

Bartley & Montague, 2013; Dreher, Kohn & Berman, 2006), cingulate cortex (Bach, Hulme, 

Penny & Dolan, 2011; Behrens, Woolrich, Walton & Rushworth, 2007; Hauser et al., 2014), 

prefrontal cortex (Turner et al., 2004), temporoparietal junction (Eickhoff, Pomjanski, Jakobs, 

Zilles & Langner, 2011), superior frontal gyrus (Ploghaus et al., 2000), or cerebellum 

(Ploghaus et al., 2000). Other studies using electroencephalography (EEG) have shown that 

that a distinct component of electrophysiological activity elicited by feedback, known as the 

feedback-related negativity (FRN), may encode uPE; the FRN is thought to have its source in 

the anterior cingulate cortex (Huang & Yu, 2014; Mas-Herrero & Marco-Pallares, 2014). The 

reason for the difference in highlighted brain regions across these studies is not clear, though 

it most likely relates to the wide variety of different procedures. Some of these studies used 

µVWDQGDUG¶�DVVRFLDWLYH�OHDUQLQJ�WDVNV�LQ�ZKLFK�SHRSOH�ZHUH�SUHVHQWHG�ZLWK�FXHV�DQG�SUHGLFWHG�

outcomes (e.g., Boll et al., 2013; Turner et al., 2004), while others used gambling tasks (e.g., 

Behrens et al., 2007; Prevost et al., 2011), and others used financial forecasting tasks (e.g., 

D'Ardenne et al., 2013). In some cases the degree of uncertainty varied over time (Boll et al., 

2013; Hauser et al., 2014), while in others uncertainty was sustained (e.g., Behrens et al., 

2007; Vanni-Mercier et al., 2009). Some studies used rewarding outcomes (typically money, 

e.g. Behrens et al., 2007; D'Ardenne et al., 2013; Hauser et al., 2014), others used aversive 

outcomes (pain, e.g., Boll et al., 2013; Ploghaus et al., 2000), and others used neutral 

outcomes (Turner et al., 2004). Future work should aim to clarify which aspects are critical 

for determining where uPEs are encoded. 

To reiterate, the studies cited above reported brain regions whose activity correlated 

with the uPE generated by presentation of an outcome. Such studies show that uPE is 

encoded in the brain, which is a prerequisite of the uncertainty principle. But the uncertainty 
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principle relates to the effect of uPE on processing of the cue, not the outcome: that is, cues 

previously associated with uncertainty (i.e., with large uPEs) should command more 

processing resources than cues previously associated with certainty (small uPEs). While this 

issue has received less attention, some fMRI studies have shown that amygdala activity 

elicited by presentation of a cue correlates with the size of uPEs previously experienced in 

relation to that cue (Aron et al., 2004; Boll et al., 2013; Li, Schiller, Schoenbaum, Phelps & 

Daw, 2011; see also Preuschoff, Hart & Einhauser, 2011). 

While these latter imaging data show a link between cues and uPEs, they still fall short 

of confirming the uncertainty principle. This is because the imaging data tell us little about 

the psychological effect of uncertainty on cue processing. These data merely reveal that cues 

associated with uncertainty elicit greater activity in certain brain areas; perhaps this activity 

has nothing to do with attentional processing. For example, uncertain cues will have 

previously been associated with more errors in outcome prediction than certain cues; perhaps 

the uPE-related activity elicited by such cues relates to frustration, rather than a difference in 

attentional processing. 

In summary, while studies of encoding of uPEs in the brain are revealing in terms of 

functional brain anatomy, they do not convincingly address the uncertainty principle. The 

next section reviews an approach that has the potential to provide somewhat stronger support. 

Uncertainty and cue processing I: Model-fitting studies.  The uncertainty principle 

states that cues previously associated with greater uncertainty will receive greater attention. 

Following a theme of this article, studies testing this claim have measured the effects of 

uncertainty on both the rate of learning about cues (i.e, their associability) and the extent of 

orienting to them. 

One strand of research has used a model-fitting approach. For example, participants in 

%ROO�HW�DO�¶V�(2013) study experienced one of three different visual cues on each trial. During 
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an initial acquisition phase, one of the cues (CS100) was paired with delivery of electric 

shock every time it appeared, another (CS-) was never paired with shock, and the third (CS50) 

was paired with shock on a random half of its presentations. Hence CS50 was associated with 

greater predictive uncertainty than CS100 or CS-. In a subsequent phase, these relationships 

were reversed so that now CS100 was never paired with shock, and CS- was always paired 

with shock (CS50 continued to be paired with shock on half of trials). The onset of this 

reversal phase (which occurred without warning) was thus a period of increased uncertainty, 

when outcomes were particularly surprising. On every trial, participants rated their 

expectancy of shock immediately after presentation of the cue. Changes in these shock-

H[SHFWDQF\�UDWLQJV�ZHUH�XVHG�WR�WUDFN�SDUWLFLSDQWV¶�OHDUQLQJ�RI�WKH�FXH±outcome relationships. 

Boll et al. tested how well two different models of learning fit the shock-expectancy data. In 

the first model, based on the Pearce±Hall theory, the associability of each cue was determined 

by its previously experienced predictive uncertainty (i.e., by the size of the uPEs on previous 

trials with this cue). This model implements the uncertainty principle. In the second model, 

the associability of each cue was fixed. Critically, Boll et al. found that the Pearce±Hall type 

model provided a significantly better fit to their learning data than the fixed learning-rate 

model. Similar results have been reported elsewhere (Bai, Katahira & Ohira, 2014; Behrens 

et al., 2007; Cavanagh, 2015; Li et al., 2011). However, other studies have found evidence 

favouring a fixed rate model over a Pearce±Hall type model (Payzan-LeNestour, Dunne, 

Bossaerts & O'Doherty, 2013), or have found a negative correlation between uPEs and 

associability (D'Ardenne et al., 2013). Finally, Prevost et al. (2011) found evidence favouring 

a fixed rate model for learning which of two responses to make under conditions of 

uncertainty, but a Pearce±Hall model for learning whether a cue indicated the current trial 

would produce an appetitive, aversive or neutral outcome. 

We can see this as a quantitative approach. In these studies the fixed-rate models 
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generally provide a reasonable account of the learning data, but the variable-rate, Pearce±Hall 

type models explain more of the variance. This is unsurprising. The fixed-rate model is a 

special case of a variable-rate model in which the parameter controlling changes in rate is set 

to zero, so the variable-rate model will always fit at least as well as the fixed-rate model. So 

in the end, whether a fixed- or variable-rate model is preferred comes down to how heavily 

the greater flexibility of the variable model is penalized; there is debate over the most 

appropriate way to implement this penalty (Kenny, 2015; Pitt & Myung, 2002). It is also 

possible that the greater variance explained by the more flexible model may reflect overfitting 

± fitting noise in addition to systematic patterns (Pitt & Myung, 2002; Wills & Pothos, 2012). 

Perhaps more importantly, the model-fitting studies cited above consider only two options: a 

fixed-rate model versus a variable-rate model incorporating the uncertainty principle. They 

do not consider alternative versions of a variable-rate model; in particular, a version 

incorporating the predictiveness principle ± perhaps such a model would provide the best fit 

of all. In other words, these studies fail to consider the relative adequacy (Wills & Pothos, 

2012) of predictiveness- and uncertainty-based models. Hence the specific support offered by 

these model-fitting studies to the uncertainty principle remains rather weak. 

Uncertainty and cue processing II: Qualitative studies.  A more satisfying approach 

would come from a focussed demonstration of a qualitative pattern of behaviour that is 

anticipated by the uncertainty principle, and which cannot be reconciled with other views 

(such as the predictiveness principle, or a fixed-rate approach). Below we consider the 

handful of human studies that have taken this approach, with somewhat mixed results. 

Griffiths et al. (2011) found some evidence that surprising outcomes increase attention 

to the cues that preceded them. This study used an allergist task in which participants learned 

about the strength of allergic reactions (weak, moderate or strong) produced when Mr X ate  

different foods. In an initial phase of training, the target cue was paired with an outcome of 
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moderate strength. In the second phase, the strength of the outcome paired with the target 

increased. According to Pearce-Hall, the initial training, in which the target cue is established 

as predictive of the moderate outcome, should decrease attention to that target and hence 

slow learning in the second phase (as compared to a control condition in which the target cue 

did not appear in the initial training phase). This effect, known as negative transfer (Hall & 

Pearce, 1979), was observed in Experiment 1. However, negative transfer is not itself a 

unique prediction of the Pearce-Hall model. To further test the Pearce-Hall account, half the 

participants in a second experiment were given some surprising trials inserted between the 

two phases (the target was presented, but no outcome occurred on these trials). The surprise 

should increase the uncertainty regarding the predictiveness of the target cue. According to 

the uncertainty principle this should produce an increase in attention, and hence increase the 

speed with which the new relationship between the target and the strong outcome is learned 

in Phase 2. This is exactly what was observed. *ULIILWKV�HW�DO�¶V demonstration of release from 

negative transfer lends unique support to the Pearce-Hall model.  

It should be noted, however, that unpublished attempts to replicate the negative transfer 

effect of Griffiths et al. (2011), by the original researchers, have been mixed. There is no 

doubt that training with a moderate outcome slows later learning with a larger outcome. In 

contrast, the critical effect of the surprising trials on later learning is typically weak, and not 

always replicated. Moreover, other studies using related procedures have found no evidence 

for a restoration of attention to a cue paired with a surprising outcome (i.e., no release from 

negative transfer: Packer, Siddle & Tipp, 1989; Siddle, 1985; Siddle, Booth & Packer, 1987; 

see also Lipp, Siddle & Dall 1993; Schutzwohl, 1998). 

A somewhat similar mixed pattern emerges when we examine another source of 

evidence for the uncertainty principle. In Hogarth, Dickinson, Austin, Brown, and Duka¶V 

(2008) design, a compound of cues A and X was always followed by an outcome (AX+: in 
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one experiment the outcome was a 50 dB tone; in another it was a more aversive, 97 dB 

noise), C and X were never followed by the outcome (CX±), and B and X were followed by 

the outcome 50% of the time (BX+/±). Thus A and C were consistent predictors of outcome 

and no outcome respectively, while B was a poor predictor. Differences in attention to these 

cues were assessed by comparing eye gaze to the unique cue on each trial (A, B, or C) with 

gaze to the common cue (X). In two experiments, Hogarth et al. found that participants spent 

longer looking at the unique cue than the common cue on all three types of compound trial. 

However, this bias in gaze was greater on BX trials than on AX and CX trials. The 

implication is that overt attention was greater to less predictive cues than to more predictive 

cues (see Trick, Hogarth & Duka, 2011, for a similar, but not identical, result). 

This finding led Hogarth, Dickinson, Austin, et al. (2008) to suggest that µattention for 

learning¶ operates according to the uncertainty principle (though an effect on learning rate 

was not reported). Again, however, there is inconsistency in the findings. Austin and Duka 

(2010) UHSOLFDWHG�+RJDUWK�HW�DO�¶V�GHVLJQ��ZLWK�RQO\�minor differences in procedure, using 

either a 97 dB noise (as used by Hogarth et al.) or a 102 dB noise as the outcome. Regardless 

of which noise was used, this study showed the greatest attentional bias to cue A (predictive 

of outcome), followed by B (nonpredictive), and then cue C (predictive of no outcome). This 

result is quite different from the B > A = C pattern observed by Hogarth et al. Austin and 

Duka did report eye gaze data consistent with the Pearce±Hall model, but only when 

positively-valenced outcomes (monetary gains) were used. However, in a further study using 

positively-valenced outcomes (cigarettes; participants were smokers), Austin and Duka (2012) 

again found the A > B > C pattern that conflicts with Pearce±Hall. Until further replication 

establishes a consistent set of findings, it is unclear how these data should be treated. 

The uncertainty principle: conclusions.  Overall, the evidence from human studies in 

support of the uncertainty principle is not as strong as that in support of the predictiveness 
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principle. While there are findings that are consistent with the uncertainty principle, they do 

not always provide unequivocal support, and must be balanced against null findings using 

similar procedures. It is, therefore, perhaps premature to apply to humans the kinds of hybrid 

models of attentional learning developed in the context of animal learning. However, the 

relative lack of evidence for the Pearce±Hall process may simply reflect a trend in the types 

of procedures that have been used to study attentional learning in humans. Beesley et al. 

(2015) have noted that the predictiveness principle can be seen as a pattern of attentional 

exploitation, in which cognitive resources become focused on the most predictive sources of 

information available so as to best exploit these sources. In contrast, the uncertainty principle 

embodies attentional exploration, in which cognitive resources are deployed to explore 

currently uncertain but potentially useful sources of information for predicting future events. 

In studies that do not involve substantial monetary rewards (the vast majority of studies of 

predictiveness LQ�KXPDQV���LW�VHHPV�IDLU�WR�DVVXPH�WKDW�SDUWLFLSDQWV¶�SULPDU\�PRWLYDWLRQ�LV�WR�

complete the experiment as quickly as possible and with minimum effort. It is plausible that 

these are circumstances favouring exploitation of whatever useful information they have 

available, rather than an effortful (and possibly fruitless) search for new information. Perhaps 

if participants were more strongly encouraged and motivated to explore all potential sources 

of information, then evidence for a Pearce±Hall type process might emerge: people might 

allocate attention in a way that helps them to understand the causal status of the cues whose 

outcomes are currently uncertain. 

What might encourage participants to explore and therefore reveal evidence for the 

uncertainty principle? One factor that may be important is the complexity of the experimental 

design. Exploration of all sources of information would seem more likely in simple designs 

that involve only a small number of cues and relationships, where the memory demands are 

relatively low and it might be possible to establish the causal status of all of the cues. In 
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effect, under such simple conditions, participants have the capacity to explore for further 

information (and may have more motivation to do so; perhaps when confronted with a very 

simple design, participants reason that there must be more to the experiment and hence 

undertake a deeper search). In this regard it is notable that studies finding evidence of 

attentional exploration have indeed tended to use much simpler designs than studies finding 

HYLGHQFH�RI�DWWHQWLRQDO�H[SORLWDWLRQ��)RU�H[DPSOH��SDUWLFLSDQWV�LQ�*ULIILWKV�HW�DO�¶V�(2011) 

experiments (which found exploration) experienced at most three different cues in any phase 

RI�WUDLQLQJ��ZKLOH�/H�3HOOH\�DQG�0F/DUHQ¶V��������VWXG\��ZKLFK�IRXQG�H[SORLWDWLRQ��LQYROYHG�

eight different cues which were experienced in overlapping cue compounds. 

A second property that might influence the exploration/exploitation balance is the 

overall amount of uncertainty present in the experiment design. In the majority of studies that 

have found evidence of exploitation, the outcome that occurred on every trial was perfectly 

predicted by the cues that were presented. So once participants had learned the various cue±

outcome relationships, they could make a correct prediction on every trial, and hence these 

designs have zero uncertainty (e.g., Bonardi et al., 2005; Eimas, 1966; Kruschke, 1996; Le 

Pelley & McLaren, 2003; Livesey & McLaren, 2007; Lochmann & Wills, 2003; Whitney & 

White, 1993). Under these circumstances, when perfect performance is possible, there seems 

little value in exploring the cues for new sources of information ± instead it makes sense to 

exploit the predictive relationships that are already known. In contrast, in the study by 

Hogarth et al. (2008), the outcome on BX trials was unpredictable: the noise occurred on a 

random half of BX trials. 6LPLODUO\��LQ�*ULIILWKV�HW�DO�¶V��������QHJDWLYH�WUDQVIHU�VWXG\��WKH�

size of the outcome paired with the target cue changed in an unpredictable way over the 

course of training. Under these circumstances of uncertainty, it makes sense to explore the 

cues for additional pieces of information that may allow more accurate predictions to be 

made in future. For example, perhaps participants LQ�+RJDUWK�HW�DO�¶V�VWXG\�WKRXJKW�WKDt there 
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was some subtle difference in the B cue that was presented on each BX trial, that predicted 

whether or not the outcome will occur, and hence attended to this cue in order to try and 

identify this putative predictive feature. Of course in reality there was no such predictive 

information on BX trials, but participants were not aware of this and so may have continued 

searching under the belief that more accurate performance was possible. 

Evidence for the role of overall uncertainty in determining the exploration/exploitation 

balance comes from a recent study by Beesley et al. (2015). On each trial, two cues were 

presented as a compound; one of these cues predicted the outcome that would occur, while 

the other did not. Eye-tracking showed that participants paid more overt attention to the 

predictive cue in each compound, revealing evidence for the predictiveness principle. 

However, the absolute accuracy with which the predictive cues allowed the outcome to be 

predicted was systematically varied (between-subjects in one experiment and within-subjects 

in another). IQ�WKH�µFHUWDLQ¶�FRQGLWLRQ, the predictive cues allowed the outcome to be predicted 

with 100% accuracy; in the µXQFHUWDLQ¶�FRQGLWLRQ, the predictive cues allowed the outcome to 

be predicted with only 67% accuracy. Notably, overt attention to all cues (both predictive and 

nonpredictive) was greater in the uncertain condition than the certain condition; that is, 

participants spent a greater proportion of each trial looking at the cues in the uncertain 

condition. This finding of greater attention to cues under conditions of greater uncertainty 

accords with the uncertainty principle embodied by the Pearce±Hall model, and with the 

suggestion that uncertainty drives attentional exploration of cues for prediction-relevant 

information. 

7DNHQ�WRJHWKHU��%HHVOH\�HW�DO�¶V�(2015) findings suggest that uncertainty might 

influence attention based on the overall uncertainty of the prediction made by all presented 

cues (i.e., given this set of cues, how uncertain am I of the outcome that will occur?), while 

predictiveness operates at the level of the individual cues (which of the N cues that were 
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presented was individually the best predictor of the outcome?). This suggestion is consistent 

with the original characterizations of uncertainty-driven and predictiveness-driven processes 

in the models of Pearce & Hall (1980) and Mackintosh (1975) respectively, and offers one 

way in which the predictiveness and uncertainty principles²which at first glance seem to be 

mutually contradictory²might be reconciled (see Le Pelley, 2004, 2010, for a hybrid model 

along these lines). However, while Beesley et al.¶V findings are promising, research into the 

experimental parameters and procedures that might reveal evidence for the uncertainty 

principle is at an early stage; as such, the possibilities raised above are currently largely 

speculation. Indeed, the notion of overall uncertainty cannot be the whole story. As far as we 

are aware, it is true that all studies supporting the uncertainty principle have used procedures 

in which the outcome cannot be predicted perfectly on each trial. However, there are also a 

handful of studies that have used procedures in which the outcome cannot be predicted 

perfectly, but which have yielded evidence consistent with the predictiveness principle (and 

counter to the uncertainty principle: Kattner, 2015; Le Pelley, Turnbull, et al., 2010; Livesey 

et al., 2011). Future research should aim to establish systematically what, if any, are the 

factors that determine whether a pattern of attentional exploitation (following the 

predictiveness principle) or exploration (following the uncertainty principle) will be observed. 

Summary: Predictiveness versus uncertainty 

The preceding sections describe a body of evidence showing that the attention paid to a 

stimulus is influenced by the accuracy with which it predicts subsequent events. We have 

seen that there is strong evidence supporting the operation of the predictiveness principle in 

humans ± the idea that more attention will be paid to cues that are more accurate predictors of 

subsequent events. There is also some evidence (certainly less abundant and arguably less 

compelling) in support of the uncertainty principle. This is (superficially at least) the opposite 
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of the predictiveness principle, and describes a process whereby greater attention is allocated 

to cues paired with outcomes that are less accurately predicted (i.e., more surprising). Hybrid 

models incorporating both of these principles have been put forward in the context of animal 

learning theory, though it remains for future empirical work to establish more convincingly 

whether both of these mechanisms operate in humans. 

Before moving on, we note briefly that there are certain phenomena demonstrating a 

relationship between learning and attention that are anticipated by both the predictiveness 

principle and the uncertainty principle. A prime example is blocking. In blocking, pairings of 

cue A with an outcome are followed by pairings of an AB compound with the same outcome. 

Less is learned about the contingency between cue B and the outcome than for a control cue 

D, trained in a CD compound where C was not previously paired with the outcome. Thus 

learning about B on ABooutcome trials is blocked by prior learning of the Aooutcome 

relationship. Several studies with humans show that blocking treatment results in a reduction 

to attention to the blocked cue B relative to the control cue D. These include studies 

measuring attention in terms of associability (Beesley & Le Pelley, 2011; Griffiths & Le 

Pelley, 2009; Kruschke & Blair, 2000; Le Pelley, Beesley & Suret, 2007; Le Pelley, 

Oakeshott & McLaren, 2005; Liu & Luhmann, 2013; Mitchell, Harris, Westbrook & Griffiths, 

2008), eye gaze (Beesley & Le Pelley, 2011; Eippert, Gamer & Buchel, 2012; Kruschke, 

Kappenman & Hetrick, 2005; Le Pelley, Beesley & Griffiths, 2014; Wills, Lavric, Croft & 

Hodgson, 2007), recognition memory (Griffiths & Mitchell, 2008), DQG�µneural PDUNHUV¶�RI�

selective attention recorded using electroencephalography (EEG: Wills et al., 2007; but see 

also Kopp & Wolff, 2000, for a null result). The pattern of reduced attention to B emerges 

from the predictiveness principle because B is a poorer predictor of the outcome on 

ABooutcome trials than is A, as a result of prior training with A alone. The same pattern 

emerges from the uncertainty principle because prior training with A renders the outcome on 
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ABooutcome trials unsurprising, compared to the outcome on CDooutcome trials which is 

surprising because neither cue has been pretrained. That is, the overall uncertainty associated 

with the AB compound is lower than that associated with the CD compound, and so²on the 

basis of the idea (raised earlier) that overall uncertainty may be the crucial determinant of 

attention (Pearce & Hall, 1980)²the uncertainty principle anticipates a reduction in attention 

to cues belonging to a low-uncertainty compound (A and B) relative to cues in a high-

uncertainty compound (C and D).3  

Other studies that are consistent with both the predictiveness and uncertainty principles 

have examined how attention to contexts varies as a function of the information learned in 

them (Abad, Ramos-Alvarez & Rosas, 2009; Callejas-Aguilera & Rosas, 2010; Gawronski, 

Rydell, Vervliet & De Houwer, 2010; Leon, Abad & Rosas, 2011; Nelson, Lamoureux & 

Leon, 2013; Rosas & Callejas-Aguilera, 2006). In essence, in these studies people initially 

learn that whenever Mr X eats a particular food (say steak) in restaurant R he suffers illness, 

but other foods eaten in this restaurant do not cause illness. Later, this relationship is 

extinguished: steak eaten in restaurant R no longer causes illness. Evidence suggests that this 

treatment results in an increase in attention to the context (restaurant R: see Nelson et al., 

2013; Rosas & Callejas-Aguilera, 2006: see also Dunsmoor, Campese, Ceceli, LeDoux & 

Phelps, 2015; Lucke, Lachnit, Stuttgen & Uengoer, 2014). This finding follows from the 

predictiveness principle because, during the extinction phase, the restaurant is a better 

SUHGLFWRU�RI�µQR�LOOQHVV¶�WKDQ�LV�VWHDN��VLQFH�VWHDN�KDV�D�VWURQJ�SUH-trained association with 

illness). It also follows from the uncertainty principle because, on early extinction trials, the 

occurreQFH�RI�µQR�LOOQHVV¶�DIWHU�HDWLQJ�VWHDN�DW�UHVWDXUDQW�5�LV�VXUSULVLQJ�DQG�KHQFH��DFFRUGLQJ�

to the Pearce±Hall model) will result in an increase in attention to all presented stimuli, which 

includes the restaurant. 

 To reiterate, these findings, like those reviewed in previous sections, provide further 
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evidence of a relationship between attention and learning about predictiveness. But because 

they do not provide selective support for any particular account of this relationship we will 

not consider them further here. 

Learned Value 

In the preceding discussion, we have considered the effect on attention of learning about 

differences in the predictiveness of cues; that is, the consistency or variability of the outcome 

that follows a particular cue. A predictive cue is one that is consistently followed by the same 

outcome, while a nonpredictive cue is one that is followed (unpredictably) by different 

outcomes. However, an emerging body of research suggests this is not the whole story; that 

attention to cues is also influenced by the motivational value of the outcome events they are 

paired with ± what we term the learned value of the stimuli. That is, while attention tends to 

increase towards cues that reliably signal their outcomes, even greater attention will be paid 

to cues that reliably signal the outcomes that have the highest value. 

To date, the majority of studies investigating the effect of learned value on attention 

have manipulated the monetary reward associated with cues (though later we shall see some 

alternative examples). In essence these studies all take a similar approach. Suppose cue X is 

consistently paired with a relatively large reward (say 10¢), and cue Y is consistently paired 

with a smaller reward (1¢). Under these circumstances, X and Y have equal predictiveness, 

since both are perfect predictors of the outcome with which they are paired. The critical 

question is whether learning about these cue±outcome relationships leads to greater attention 

being paid to the high-reward cue X than to the low-reward cue Y. 

Three key empirical papers have provided a great deal of the impetus behind the recent 

body of research investigating the influence of learned value on attention: Anderson, Laurent 

and Yantis (2011b), Della Libera and Chelazzi (2009), and Raymond and O'Brien (2009). In 
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searching for literature relating to this field, we searched ISI Web of Science on 19/10/2015 

for all articles in the fields of psychology, neuroscience, psychiatry, behavioral sciences and 

multidisciplinary sciences citing one or more of these key papers. The resulting 195 hits were 

reviewed for content and for references to other relevant articles (4 found). This yielded 86 

articles relevant to the current discussion (marked as results of Search 2 in the reference list), 

which we cover in the sections to follow. Reasons for exclusion were: (1) The article did not 

present novel empirical data (articles in this category were reviews or modelling papers) ± 14 

articles; (2) The article described data from nonhuman animals only, whereas our focus is on 

humans ± 9 articles; (3) The article presented data from humans, but did not bear on the 

question of how learning changes attention to cues ± 86 articles. Most articles in this category 

made only a passing reference to one of the key papers as providing an example of a factor 

(reward) that influences attention (47 articles). Others described studies that did not involve 

learning a relationship between a stimulus and a value-related outcome (reward or 

punishment: 24 articles), or did not measure attention (7 articles). Finally 8 articles described 

studies measuring learning of an arbitrary attentional response: e.g., when cue X appears in 

the centre of the screen, participants are rewarded for making a saccade to the left. These 

studies are irrelevant for current purposes, as we are interested in how reward influences the 

attention that is paid to the cue itself. 

The evidence reviewed below comes in two kinds. In some studies, the cues that predict 

the valued rewards are task-relevant ± participants must do something with them in order to 

complete a task. In other studies, the cues that predict valued rewards are task-irrelevant: 

participants are never required to attend to them²indeed, must ignore them²in order to 

complete the task. For example, when looking through a drawer for my keys, the keys are the 

task-relevant stimulus. Other items in the drawer (balls of string, batteries etc) that are not the 

object of my search²and which may even impede my search²are task-irrelevant stimuli. 
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There is strong evidence for a top-down, deliberate, value-based attentional bias when the 

cues in question are task-relevant. We review this evidence first. Following this, we describe 

evidence from studies using task-irrelevant cues, which shows that learned value can also 

result in bottom-up, automatic attentional capture. 

Reward Influences Attention to Task-Relevant Stimuli 

It is now well established that the learned value of stimuli influences performance on tasks in 

which they are task-relevant. For example, in a study of visual search, Stormer, Eppinger and 

Li (2014) had participants locate, and report the orientation of, a T shape (the target) among 

rotated L shapes (distractors) on each trial. They received a reward for each correct response, 

with the size of this reward depending on the colour in which the target T was presented. For 

example, a correct response to a red T may yield a relatively large reward (5¢), but a green T 

may yield smaller reward (1¢). Each of the distractors was rendered in a distinct, randomly 

chosen colour (but not one of the colours in which the target could appear; red or green in this 

example). Over the course of training, participants became faster to respond to targets 

rendered in the high-reward colour than the low-reward colour. This finding suggests that 

learning about the rewards associated with stimuli modulated attention to those stimuli; 

greater attention allocated to the high-reward target colour than the low-reward colour.  

A crucial question, addressed earlier in the context of learned predictiveness, is whether 

this learned YDOXH�HIIHFW�LV�XQGHU�SDUWLFLSDQWV¶�FRQWURO��WRS-down) or is automatic (bottom-up). 

A top-GRZQ�DFFRXQW�RI�6WRUPHU�HW�DO�¶V�ILQGLQJV�ZRXOG�DUJXH�WKDW��KDYLQJ�OHDUQHG�WKDW�

locating a red target was worth more than locating a green target, people strategically 

reallocated attentional resources to prioritize processing of red stimuli (cf. Duncan, 1989; 

Wolfe, Butcher, Lee & Hyle, 2003). A bottom-up account supposes that training changes the 

extent to which those FRORXUV�DXWRPDWLFDOO\�FDSWXUH�DWWHQWLRQ�UHJDUGOHVV�RI�WKH�SDUWLFLSDQW¶V�

intentions. In this case, reward learning makes the high-reward colour more psychologically 
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VDOLHQW��VR�WKDW�LW�µOHDSV�RXW¶�IURP�WKH�GLVSOD\�DQG�LV�ORFDWHG�PRUe quickly. While Stormer et 

DO�¶V�ILQGLQJV�GHPRQVWUDWH�DQ�LQIOXHQFH�RI�OHDUQHG�YDOXH�RQ�DWWHQWLRQ��WKH\ do not allow us to 

decide between these alternative accounts of that influence. This is because the stimuli that 

predicted reward (red and green colours) were task-relevant throughout the task ± they 

defined the targets to which participants responded in order to earn that reward. Consequently 

SDUWLFLSDQWV¶�JRDOV�(locate valuable stimuli) were aligned with the reward structure of the task, 

such that top-down and bottom-up accounts anticipate the same pattern of behaviour. 

Several other recent studies have found similar evidence consistent with an effect of 

learned value on attention to task-relevant, reward-related stimuli.4 All of these examples 

could potentially be explained by a top-down influence of learned value on attention, a 

bottom-up influence, or a combination of the two. In some cases it would appear that top-

down processes are contributing, since attention is influenced by verbal instructions regarding 

reward relationships even in the absence of further stimulus±reward training that would be 

required to alter bottom-up attention (Le Pelley, Mitchell, et al., 2013; Stankevich & Geng, 

2015). In other cases it seems that bottom-up processes may be at work. For example, prior 

association with large reward facilitates visual search for stimuli even if these stimuli are 

colour singletons (e.g., a single red target circle among several blue distractors: Kiss et al., 

2009; Kristjansson et al., 2010). It is often assumed that such singleton search primarily 

reflects the operation of rapid, bottom-up attentional processes due to the physical salience of 

the target, so it seems plausible that reward might be modulating the operation of this bottom-

up process (see also O'Brien & Raymond, 2012; Stankevich & Geng, 2015, for further 

evidence consistent with a rapid influence of learned value). 

So, we have evidence consistent with an influence of learned value on top-down 

attention. This is unsurprising, and should be uncontentious. If I have learned that responding 

to stimuli appearing in location X produces a large reward, while responding to stimuli in 



Human attentional learning 
 

44 
 

location Y produces small reward, then clearly I ought to prioritise location X rather than 

location Y so as to maximize my payoff (see Chelazzi, Perlato, Santandrea & Della Libera, 

2013; Maunsell, 2004). More exciting is the possibility that learned value might exert an 

automatic effect on attentional capture that is outside of parWLFLSDQWV¶�VWUDWHJLF�FRQWURO��:KLOH�

the studies reviewed above are (arguably) suggestive of such an effect, work using task-

irrelevant cues has yielded more conclusive evidence. 

Value-Modulated Attentional Capture by Task-Irrelevant Stimuli 

As noted above, the reason the studies in the previous section have trouble discriminating 

between goal-directed and automatic accounts is because SHRSOH¶V goals were aligned with 

WKH�WDVN¶V�UHZDUG�VWUXFWXUH��Studies using task-irrelevant cues have solved this problem by 

HIIHFWLYHO\�GHFRXSOLQJ�SDUWLFLSDQWV¶�JRDOV�IURP�WKH�UHZDUG�VWUXFWXUH, so that the relationship 

between cues and reward is incidental to the task participants are engaged in. Most of this 

work has been in visual search and related tasks requiring allocation of spatial attention, and 

hence we focus on this area, though we will also cover approaches based on nonspatial tasks. 

Learned value in spatial tasks.  There are three ways in which spatial tasks have been 

used to look at learned value for task-irrelevant cues. Firstly, cues can be task-relevant in a 

training phase where they are paired with reward, but then task-irrelevant on a later test. On 

test, attention to the pretrained cues is measured by the extent to which they distract attention 

from the task participants are engaged in. We refer to these as training phase ± test phase 

procedures. Secondly, in intertrial priming procedures, cues can predict reward on one trial, 

and then serve as distractors on the next trial. Finally, cues can be scheduled to signal reward, 

but never be the target of the task participants are performing. Below we review evidence 

from each of these three approaches for an influence of learned value on automatic attentional 

capture. 
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Training phase ± test phase procedures.  Perhaps the most common procedure for 

studying the relationship between learned value and attention was developed by Anderson et 

al. (2011b). Each trial of an initial training phase presented six differently coloured circles 

(Figure 2a). Each display contained a target circle, which could be red or green. Participants 

responded as rapidly as possible to the orientation (vertical or horizontal) of a line inside the 

target circle. Fast, correct responses were rewarded, with the amount of reward related to the 

colour of the target (red or green) on that trial. One of the target colours (the high-value 

colour) was typically paired with high reward (5¢); the other, low-value target colour was 

typically paired with low reward (1¢). 

After extensive training on this task, participants moved on to a test phase, in which no 

further rewards were delivered. During the test phase, the target on each trial was now 

defined by shape; say, a diamond among circles (Figure 2b). Hence colour was now task-

irrelevant, since it did not define the target. Critically, people were slower to respond to the 

shape-singleton target if the display contained a distractor shape in the high-value colour 

(known as high-value distractor trials) than if neither of the reward-related colours was 

present in the display (no-distractor trials: note, the comparison here does not include low-

value distractor trials, we return to this issue later). This finding suggests that participDQWV¶�

prior experience with the high-value target colour during the training phase made it more 

likely to distract attention away from the target in the test phase. Notably, since colour was 

task-irrelevant in the test phase, there was no reason to strategically orient attention to red or 

green stimuli. The implication is that the high-value distractor colour produced automatic and 

involuntary capture of attention. Several subsequent studies have replicated the finding of 

slower responses during the test phase on high-value distractor trials compared to no-

distractor trials (Anderson, Faulkner, Rilee, Yantis & Marvel, 2013; Anderson, Laurent & 

Yantis, 2013, 2014; Anderson, Leal, Hall, Yassa & Yantis, 2014; Anderson & Yantis, 2012; 
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Laurent, Hall, Anderson & Yantis, 2015; Qi, Zeng, Ding & Li, 2013; Roper, Vecera & 

Vaidya, 2014; Sali, Anderson & Yantis, 2014; Wang, Yu & Zhou, 2013). 

However, there is a problem of interpretation here. Attentional capture by the high-

value colour (say, red) during the test phase may not be driven by its learned value, but 

because this colour defined the target during the preceding training phase. So the fact that red 

continues to capture attention during the test phase may simply reflect a difficulty in 

inhibiting an old task-set (locate red and green stimuli) and adopting a new one (locate shape 

singleton), regardless of reward. In other words, red may capture attention because it has 

been responded to as a target many times in the past, an effect known as selection history 

(Awh, Belopolsky & Theeuwes, 2012; Kyllingsbaek, Schneider & Bundesen, 2001). 

Anderson et al. (2011b; see also Qi et al., 2013; Wang et al., 2013) attempted to rule 

out this non-reward-based account. They repeated their original study, but provided no 

rewards during the initial training phase. In this unrewarded control condition, no significant 

difference in response time was observed during the test phase between trials featuring a 

distractor in a colour that had been a target during training (red or green) versus no-distractor 

trials. This null result suggests that, in this procedure, selection history alone does not 

produce capture by former targets. The implication is that capture by the former high-reward 

target in the rewarded version of the task is a product of its learned value, and not merely 

because it has previously been a target. Caveats are needed here, though. Neither Anderson et 

al. nor Qi et al. tested whether capture by the former target was significantly greater in a 

rewarded procedure than in an unrewarded procedure, so these studies do not provide a 

robust test of the claim that reward is the critical variable. Wang et al. are alone in testing this 

critical interaction, which they did find to be significant. The majority of studies that rely on a 

comparison between high-value distractor versus no-distractor trials to claim an effect of 

learned value on attention do not include an unrewarded control condition at all, so evidence 
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from these studies should be regarded with caution (Anderson, 2015a, 2015b; Anderson, 

Faulkner, et al., 2013; Anderson, Laurent, et al., 2013, 2014; Anderson, Leal, et al., 2014; 

Anderson & Yantis, 2012; Laurent et al., 2015; Roper et al., 2014).  

There is a simple solution to this problem. Recall that Anderson et al. (2011b) trained 

two colours in their training phase, one paired with high reward and the other with low 

reward. If, on test, the high-value colour were more likely to produce capture than the low-

value colour, this must reflect an influence of reward prediction since this comparison 

controls for all other differences (e.g., both high- and low-value colours were equally likely 

to appear as targets during training and hence selection history is equal for both). This more 

stringent, high-versus-low difference has been reported in some recent studies.5 These studies 

thus demonstrate conclusively that prior learning about the value of an outcome that is 

associated with a stimulus produces a change in the extent to which that stimulus will 

automatically capture attention in the future. This effect can be termed value-modulated 

attentional capture (VMAC). These experiments further suggest that: (1) High-value 

distractors are more likely to capture attention than low-value distractors even when the 

location of the target is known in advance (Wang et al., 2014: see also Munneke, 

Hoppenbrouwers & Theeuwes, 2015). (2) VMAC may be long-lived, lasting for months after 

the initial training phase (Anderson & Yantis, 2013). (3) Learned value can produce 

automatic capture of eye movements (known as oculomotor capture). Theeuwes and 

Belopolsky (2012) used a task similar to that of Anderson et al. (2011b), but with saccades to 

the target stimulus as the response. During the test phase, participants were more likely to 

make saccades towards a high-value distractor than a low-value distractor, even though these 

stimuli were task-irrelevant. (4) VMAC is not restricted to learning about reward. Two 

studies have found greater attentional capture by stimuli paired with large loss of money 

relative to stimuli paired with small (or no) loss (Wang et al., 2013; Wentura et al., 2014). 
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Wang et al. also reported greater capture by a stimulus paired with painful shock than by a 

stimulus that was never paired with shock (Van Damme, Crombez, Hermans, Koster & 

Eccleston, 2006 report a similar finding; for a further demonstration of a bias in spatial 

attention towards a stimulus paired with an aversive event [threat], see Field, 2006). These 

findings suggest the crucial determinant of VMAC is the motivational significance of the 

predicted outcome (large rewards and large punishments are more arousing events than are 

small rewards/punishments) rather than the valence of that outcome (whether it is affectively 

positive [appetitive] or negative [aversive]: cf. Kahnt, Park, Haynes & Tobler, 2014). 

Later we shall consider further the nature of the VMAC effect implicated in these 

studies²whether it reflects the development of aQ�µDWWHQWLRQDO�response KDELW¶ towards 

stimuli that produce reward, or an increase in the effective salience of those stimuli. First, 

though, we shall look at a related case, but in which reward-learning exerts a shorter-term 

effect on attentional selection. 

Inter-trial priming procedures.  In the studies described in the previous subsection, 

value relationships were constant over the training phase (e.g., responses to red targets were 

paired with large reward, and green targets with low reward, throughout training). The effect 

RI�WKHVH�µORQJ-WHUP¶�DVVRFLDWLRQV�then lingered to influence attention in a test phase which 

occurred minutes (e.g., Anderson et al., 2011b), days (e.g., Della Libera & Chelazzi, 2009), 

or months (e.g., Anderson & Yantis, 2013) later. Other studies have instead looked at short-

term effects of reward learning on attention. Imagine a search task in which the target on each 

trial is either red or green, chosen at random. Suppose that participants must respond to a red 

target on trial T; this will produce a performance benefit on the next trial (T+1) if it also 

features a red target, but a performance decrement if trial T+1 has a green target while a red 

stimulus appears as a distractor (Maljkovic & Nakayama, 1994, 1996, 2000). This short-term 

effect, wherein target choice on the previous trial influences performance on the current trial, 
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is known as inter-trial priming. Notably, several studies of inter-trial priming have provided 

rewards for responding to the target. Whether high or low reward is provided on each trial is 

decided randomly ± unlike in the studies described in the previous subsection, there is no 

consistent relationship between a particular colour and reward magnitude. Crucially, if the 

response to (say) a red target on trial T is highly rewarded, the effect of inter-trial priming on 

trial T+1 is magnified relative to the case where the response to that same red target on trial T 

received low reward.6 This pattern is again consistent with the idea that pairing a stimulus 

with high reward increases the extent to which that stimulus subsequently captures attention, 

making it easier to detect when it is a target and harder to ignore when it is a task-irrelevant 

distractor. Effectively this inter-trial priming procedure condenses the training and test phases 

of the studies in the previous subsection into a pair of trials, where trial T is the training phase, 

and trial T+1 is the test phase. In combination, then, it seems that OHDUQLQJ�RI�µVWDEOH¶�UHZDUG�

associations can exert a long-term influence on attentional capture, while experience of 

individual and unpredictable stimulus±reward pairings can have a similar, but short-term, 

effect on capture. 

Learned value influences capture by stimuli that have never been task-relevant.  To 

reiterate, studies using distinct training and test phases, or inter-trial priming, share a common 

framework. Initially, responding to a stimulus is paired with high-value reward (either in a 

training phase or on trial T), and later that stimulus is found to be more likely to capture 

attention when it is task-irrelevant (in a test phase, or when it is presented as a distractor on 

trial T+1). Taking a step back, the fact that the reward-predictive stimulus was task-relevant 

during training (or on trial T)²i.e., it was the target that was responded to²means that 

participants needed to quickly orient to this stimulus in order to earn the reward on each 

training trial. As a result, it is possible that attentional capture by reward-related stimuli 

during the test phase (or on trial T+1) was a carryover of the attentional and/or oculomotor 
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orienting response that was initially trained. A fundamental principal of reward learning is 

that following an action with reward increases the likelihood that the action will occur in the 

future (the so-called Law of Effect: Thorndike, 1911). Perhaps then, it is not surprising that a 

rapid orienting response that was followed by large reward during training continues to occur 

in a subsequent test phase, even when the response is no longer relevant to the task goals. 

That is, perhaps the attentional and oculomotor orienting observed in these studies reflects a 

learned (conditioned) response that is automatically re-enacted whenever the relevant 

conditioned stimulus appears��L�H���DQ�µDWWHQWLRQDO�KDELW¶. Now we will consider evidence for 

another form of automatic attentional bias. Here, rather than training an attentional response 

to task-relevant cues, we examine whether cues paired with high-value outcomes can become 

more likely to capture attention²can increase in psychological salience²even though they 

were never task-relevant. 

In a study by Le Pelley, Pearson, Griffiths and Beesley (2015), participants had to move 

their eyes as quickly as possible to a diamond-shaped target among circles, on every trial. A 

distractor circle could appear in either a high-value colour or a low-value colour (red or blue, 

counterbalanced); all other stimuli were grey. On trials with a distractor circle in the high-

value colour, rapid saccades to the diamond earned a large reward. On trials with a low-value 

distractor, rapid saccades to the diamond earned a small reward. Thus while the distractor 

predicted reward value, it was never the stimulus to which people were required to respond 

(or direct their attention) to obtain that reward; the reward-predictive distractors were always 

task-irrelevant. Indeed, if at any point participants looked at the distractor circle, the reward 

on that trial was cancelled; these were termed omission trials. So attending to the distractor 

was counterproductive to SHRSOH¶V goal of maximizing their payoff. The worst thing a 

participant can do under these conditions is to look at a distractor in the high-value colour, 

since that results in loss of a high-value reward. And yet that is exactly what people did: high-
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value distractors produced significantly more omission trials than did low-value distractors. 

That is, people were more likely to look at high-value distractors than low-value distractors, 

even though doing so lost them the large reward that they would otherwise have obtained. 

This finding of counterproductive VMAC by task-irrelevant stimuli has proven robust 

(Failing, Nissens, Pearson, Le Pelley & Theeuwes, 2015; Pearson, Donkin, Tran, Most & Le 

Pelley, 2015: for similar findings from related procedures, see also Bucker, Belopolsky & 

Theeuwes, 2015; Buschschulte et al. 2014; Hopf et al. 2015; Mine & Saiki, 2015). 

These findings show that reward learning can modulate attentional capture by stimuli 

even when responding to (or orienting attention towards) those stimuli has never been 

rewarded. The implication is that the influence of learned value on attentional capture (i.e., 

VMAC) is a function of the signal-value of stimuli, rather than their response-value. That is, 

stimuli which signal the availability of high-value outcomes become more likely to capture 

attention. In the terminology of conditioning research, these data suggest that VMAC reflects 

the operation of a Pavlovian, rather than instrumental, learning process.  

Extensions of the basic procedure described above show that: (1) Counterproductive 

VMAC by task-irrelevant stimuli persists over extended training; even with extensive 

experience, participants did not come to show an adaptive pattern wherein they suppressed 

attention to the high-value distractor, which would have increased their payoff (Le Pelley et 

al., 2015). (2) The effect persists when participants are explicitly informed that looking at the 

distractor results in omission of reward, and are told every time this omission occurs (Pearson 

et al., 2015). This finding further demonstrates that people are unable to use controlled 

processes to overcome the effect, even when explicitly motivated to do so. (3) The effect 

occurs when the reward-predictive distractors are physically salient colour singletons (e.g., a 

single red circle among grey shapes: Le Pelley et al., 2015; Pearson et al., 2015), and when 

they are not physically salient (e.g., a red circle among other distinctly coloured shapes, as in 
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Figure 2a: Failing et al., 2015: see also Bucker et al., 2015). This last finding suggests that 

learned signal value can modulate the strength of capture that would otherwise by caused by 

physical salience, and drive capture by non-physically salient stimuli in its own right. 

Learned value in nonspatial tasks.  Studies described in the previous section 

investigated the effect of learned value on spatial attention; the extent to which attention is 

allocated to one location rather than another. But spatial attention is only one aspect of 

attentional selection. We can also prioritise detection of events that will occur in a known 

location; e.g., a driver at an intersection knows where the green light will appear, but not 

when. A handful of studies have shown that nonspatial perceptual processing of task-

irrelevant stimuli is also influenced by learned value; either via monetary reward (Della 

Libera & Chelazzi, 2009; Della Libera, Perlato & Chelazzi, 2011; Failing & Theeuwes, 2015), 

or punishment (an aversive loud noise: Smith, Most, Newsome & Zald, 2006). These studies 

show that stimuli previously paired with high-value outcomes (compared to low-value 

outcomes) interfere more strongly with processing of²and responding to²a target when 

they are presented in the same location as that target; either sequentially (Failing & Theeuwes, 

2015; Smith et al., 2006),7 or simultaneously (Della Libera & Chelazzi, 2009; Della Libera et 

al., 2011; Kelly & Forsyth, 2007). As for the spatial studies discussed earlier, this suggests 

that stimuli with high learned value captured attention and so reduced attentional resources 

available for processing the target. However here this capture effect must have been 

nonspatial, since all stimuli were presented in the same location. 

Summary: Learned Value Affects Top-Down and Bottom-Up Attention 

Overall, the pattern of data with respect to learned value is rich and interesting. Just as in the 

case of learned predictiveness, learning about outcome value appears to LQIOXHQFH�SHRSOH¶V�

allocation of attention in a strategic, top-down way. However, the influence of learned value 
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on attention is not entirely under our control. Studies of value-modulated attentional capture 

(VMAC) show that stimuli that predict high-value outcomes (positively or negatively 

valenced) become more likely to capture our attention (both spatially and nonspatially) in an 

automatic, bottom-up fashion. This attentional bias could be due to a habitual orienting 

response (DQ�µattentional habit¶) or to a change in effective salience of stimuli brought about 

by changes in their signal value. It is not possible to say for certain which of these two 

potential mechanisms is responsible for the effects seen in the training phase ± test phase and 

the intertrial priming procedures described above ± both can explain the observed data. We 

can be more certain, however, of the mechanism at work in procedures in which reward-

predictive stimuli are task-irrelevant throughout. Here, attentional orienting to the high-value 

cues is never rewarded and so it is not possible for an attentional habit to have developed. 

The attentional bias must, therefore, be a consequence of the signal value of the cues and 

hence their ability to capture attention. We now turn to potential theoretical models of all of 

the empirical data we have reviewed. 

Modelling Effects of Predictiveness and Value 

In the previous section, we saw that there is now abundant evidence demonstrating that 

stimuli associated with high-value outcomes receive greater attention than those associated 

with low-value outcomes. Earlier in the article, we reviewed the substantial evidence in 

support of the predictiveness principle ± stimuli that are more predictive of outcomes (i.e., 

that provide more information regarding which outcome will occur) tend to receive more 

attention than stimuli that are less predictive. 7KLV�ILQGLQJ�ILWV�ZHOO�ZLWK�0DFNLQWRVK¶V��������

model and its relatives. In contrast, the Pearce-Hall model, and the uncertainty principle on 

which it is based, did not receive strong support from the data. In this section we will 

consider how models of the predictiveness principle can be extended such that both 
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predictiveness and learned value might be reconciled within a simple, single framework.  

Applying Mackintosh (1975) to Learned Value 

As noted earlier, the suggestion of a relationship between learning and attention is not novel. 

William James described the possibility in 1890, and formal attentional models of associative 

learning have existed for over 50 years (Mackintosh, 1975, provides an early review). Most 

of the previous research on attentional learning in the associative tradition has tended to focus 

on learned predictiveness and uncertainty, rather than learned value, and the development of 

theories reflects this (e.g., Kruschke, 2001b; Le Pelley, 2004; Mackintosh, 1975; Pearce & 

Hall, 1980). Nevertheless, these theories can potentially also be applied to account for effects 

RI�OHDUQHG�YDOXH�RQ�DWWHQWLRQ��&RQVLGHU�0DFNLQWRVK¶V��������PRGHO��ZKLFK implements the 

predictiveness principle. This model states that following each learning trial, the associative 

strength of each presented stimulus A (VA) is updated according to the following equation: 

¿8º L 5=º:IF 8º;   [1], 

where S is a fixed learning-rate parameter. As discussed earlier, the prediction error ���± VA) 

represents the discrepancy between the actual magnitude of the outcome on a WULDO������DQG�WKH�

extent to which stimulus A predicts that outcome (associative strength of A, VA). Critically, 

.A is a variable representing the attention paid to stimulus A. Let X represent all other stimuli 

that are presented simultaneously with stimulus A on a given trial. According to 

0DFNLQWRVK¶V�original PRGHO��.�LV�GHWHUPLQHG�E\�FRPSDULQJ�KRZ�ZHOO�WKH�RXWFRPH�LV�

predicted by A (given by the absolute value of the pUHGLFWLRQ�HUURU�IRU�$��_��± VA|), with how 

ZHOO�WKH�RXWFRPH�LV�SUHGLFWHG�E\�;��JLYHQ�E\�_��± VX|). If A is a better predictor of the 

RXWFRPH�WKDQ�LV�;��WKHQ�DWWHQWLRQ�WR�$��.A��VKRXOG�LQFUHDVH��LI�$�LV�D�SRRUHU�SUHGLFWRU��WKHQ�.A 

should decrease. However, beyond this general principle, Mackintosh gave no specific 

algorithm for determining changes in .. Following Le Pelley (2004), perhaps the simplest 

expression for updating .A WKDW�LV�FRQVLVWHQW�ZLWK�0DFNLQWRVK¶V�SULQFLSOH�LV� 
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¿=º L E:�IF 8Ñ�F �IF 8º�;  [2], 

ZKHUH���LV�D�IL[HG�UDWH SDUDPHWHU��DQG�.A is constrained to lie between a lower limit 

(representing minimal attention: here we use 0.1) and an upper limit (representing maximal 

attention: here we use 1). Further details and simulations of this model are provided by Le 

Pelley (2004).  

In this model, attention to predictive stimuli will tend to increase towards the upper 

limit, regardless of exactly what outcome they predict. However, the rate of this increase 

GHSHQGV�RQ�WKH�YDOXH�RI�WKH�RXWFRPH�����7KLV�LV�EHFDXVH��HDUO\�LQ�WUDLQLng when VA is small, a 

ODUJH�YDOXH�RI���ZLOO�SURGXFH�D�ODUJH�SUHGLFWLRQ�HUURU�LQ�(TXDWLRQ�>�@�DQG�KHQFH�UDSLG�OHDUQing. 

Thus cue A will rapidly become established as a better predictor of the outcome than are 

other simultaneously-presented stimuli, X (e.g., the experimental context), so attention to cue 

A will increase quickly according to Equation [2]. Consequently, at least early in training this 

model correctly anticipates greater attention to stimuli that predict a high-value outcome (e.g., 

a large reward) than those that predict a low-value outcome (Figure 3a). However, at 

asymptote the model anticipates that attention will depend on learned predictiveness 

(attention will be greater to predictive than nonpredictive cues) but not learned value (i.e., 

attention will not depend on the value of the outcome that a predictive cue predicts). That is, 

this model anticipates that the influence of learned value on attention will decrease as training 

proceeds. However, this pattern runs against the findings of Le Pelley et al. (2015), who 

found that the effect of learned value showed no sign of decreasing over extended training, 

and if anything tended to increase as training continued. 

A Simpler Model: Attention Is Determined by Associative Strength 

In fact, it is straightforward to modify the approach described above so that it is better-

equipped to account for both learned value and the predictiveness principle, even after 

extended training. Rather than basing attention on a comparison of the predictiveness of 
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different stimuli (as in Equation [2]), an alternative approach has attention to a cue 

determined by the absolute associative strength of that cue: 

=º L �8º�  [3], 

2QFH�DJDLQ�ZH�VHW�D�ORZHU�OLPLW�IRU�.�of 0.1, representing minimal attention.8 The resulting 

model still accounts for most demonstrations of an attentional advantage for predictive over 

nonpredictive stimuli, because the predictive stimuli in these studies typically have greater 

associative strength ± since a predictive cue is consistently paired with the same outcome, it 

will develop a strong association with that outcome. Notably, in this alternative model, 

attention is also a direct function of learned value. This is because asymptotic associative 

strengths for stimuli paired with high-value outcomes will be greater than for stimuli paired 

with low-value outcomes (Figure 3b). (Formally: According to Equation [1], learning reaches 

asymptote when VA = ���VLQFH�DV\PSWRWLF�VA GHSHQGV�RQ�RXWFRPH�PDJQLWXGH����WKHQ�

DFFRUGLQJ�WR�(TXDWLRQ�>�@��DV\PSWRWLF�.A ZLOO�DOVR�GHSHQG�RQ�����$�PRUH�FRPSOH[��DQG�

probably more representative, model implementing attentional learning along these lines has 

recently been developed by Esber and Haselgrove (2011). 

The idea that attention towards a cue increases to the extent that it predicts a high-value 

outcome² attention is determined by associative strength²is very intuitive, and is consistent 

with the idea that attention goes to cues that are known to be significant (Mackintosh, 1975). 

It is also supported by studies from the learned predictiveness literature which indicate that 

attention is modulated by absolute predictiveness (e.g., how strongly do apples predict illness? 

How strongly do bananas predict illness?), as in Equation 3, rather than a comparison of the 

relative predictiveness of different cues presented on the same trial (which of apples or 

bananas is the better predictor of illness?), as in Equation 2 (Beesley & Le Pelley, 2010; 

Kattner, 2015; Le Pelley, Turnbull, et al., 2010; Livesey et al., 2011).  

This simpler model, in which attention is proportional to associative strength, is 
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generally successful in accounting for empirical effects of both learned predictiveness and 

learned value. However, a challenge comes from another phenomenon ± the inverse base rate 

effect. Here, there is some evidence that predictive cues command more attention than their 

less predictive competitors (i.e., that attention is determined by a comparison of relative 

predictiveness, as specified by Mackintosh, 1975) even when the less predictive cues have 

higher associative strength. 

The inverse base rate effect.  The inverse base-rate effect (IBRE: Medin & Edelson, 

1988), and the analogous highlighting effect (Collins, Percy, Smith & Kruschke, 2011; 

Dennis & Kruschke, 1998; Kruschke, 1996a, 2009; Kruschke et al., 2005; Sewell & 

Lewandowsky, 2012), seem to conflict with the idea that attention can simply be equated 

with associative strength. In the IBRE, a compound of two cues predicts a commonly 

occurring outcome (AB o common), while an overlapping cue-compound predicts a rarer 

outcome (AC o rare). Cue B is thus a perfect predictor of the common outcome, C is a 

perfect predictor of the rare outcome, and A is an imperfect predictor. On test, when 

presented with compound BC participants typically report expecting the rare outcome 

(predicted by C). This is noteworthy, as both B and C are equally predictive of their 

respective outcomes, and since the outcome of B is more common, a rational person should 

predict the common outcome when presented with BC. 

Of course, cue familiarity is not equated in the IBRE design, and so the relative novelty 

of cue C provides one possible explanation for why participants seem to place more weight 

on it. However, simply pairing one cue with its outcome more often than another cue does not 

produce the effect: the shared cue A is crucial. Thus, training on FD o common and GE o 

rare leads to the reverse of the IBRE effect. That is, participants select the common disease in 

response to DE (Kruschke, 2001a; Medin & Edelson, 1988; Medin & Robbins, 1971; Wills, 
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Lavric, Hemmings & Surrey, 2014). It is not, therefore, cue-familiarity that drives the IBRE. 

Instead, choice of the rare outcome when presented with BC can be explained if it is 

DVVXPHG�WKDW�VRPH�DVSHFW�RI�SDUWLFLSDQWV¶�H[SHULHQFH�KDV�FDXVHG�WKHP�WR�DWWHQG�PRUH�WR�&�

than to B. Support for an attentional interpretation of the IBRE comes from eye-tracking 

findings showing greater overt attention to C than to B following AB o common and 

AC o rare training (Kruschke et al., 2005). Furthermore, using EEG, Wills et al. (2014) 

showed that a validated neural marker of selective attention was also modulated by IBRE 

training, consistent with greater attention to C than to B. 

 Why is attention to C greater than to B in the IBRE? It is at this point that our simple 

model, in which attention is determined by associative strength (Equation [3]) is found 

wanting. In some studies of the IBRE, as well as being tested with the BC compound, 

participants have also been presented with B alone and C alone during the test phase. In many 

(but not all) cases where an IBRE is observed, accuracy in predicting the common outcome 

for cue B alone numerically exceeds accuracy for predicting the rare outcome for cue C alone 

(Bohil, Markman & Maddox, 2005; Medin & Edelson, 1988; Wills et al., 2014; Winman, 

Wennerholm, Juslin & Shanks, 2005); in one case (Wills et al., 2014) this advantage for B 

over C was tested statistically, and shown to be significant. So the IBRE can be observed 

even when C has (if anything) a lower associative strength than B. As such, we cannot easily 

explain an attentional advantage for C over B in terms of our model which equates attention 

with associative strength. 

In contrast, the attentional advantage for C over B emerges more naturally from an 

account in which attention is based on a comparison of the relative predictiveness of different 

FXHV�SUHVHQWHG�WRJHWKHU�RQ�D�WULDO��DV�LQ�0DFNLQWRVK¶V��������RULJLQDO�PRGHO��(TXation [2]). 

Briefly, the shared cue A is more predictive of the common outcome presented on AB trials 

than it is the rare outcome presented on AC trials. Hence cue A competes more effectively for 
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attention with B than it does with C, and so attention to C increases relative to B. 

One possible way of reconciling the IBRE findings with our model equating attention 

with associative strength is to appeal to the role of the experimental context. On the basis of 

our model, the attentional advantage for C over B in the IBRE suggests that the Bocommon 

association is weaker than the Corare association. If the context comes to be associated 

more strongly with the common outcome than the rare outcome, this could explain why 

people are nevertheless more likely to correctly choose common when presented with B alone 

than they are to choose rare when presented with C alone. This possibility remains to be 

tested empirically. 

In conclusion, our attempt to develop a unified theory of learned predictiveness and 

learned value has met with some success. Most of the data presented in this review are 

captured by the idea that learning increases attention to cues to the extent that those cues 

acquire associative strength. The IBRE represents the single exception to this rule of which 

we are aware. It may be that future research will show how the IBRE can be reconciled with 

the simple model, or we may have to think along different lines in order to account for all of 

the data within a single model. We turn now to a final summary and concluding comments on 

the literature concerning associative learning and attention. 

Summary and Conclusions 

There is an abundance of evidence for attentional learning in humans. Attention is influenced 

both by learning about the predictiveness of a stimulus (how much information it provides 

about other, outcome events) and about its value (how significant²rewarding, punishing²

those outcome events are). Furthermore, both of these phenomena manifest themselves as 

both top-down (controlled) and bottom-up (automatic) attentional biases. Taken together, 

these findings suggest a fundamental relationship between learning and attention, wherein 
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learning leads to prioritisation²both controlled and automatic²of those stimuli likely to be 

of greatest importance ± cues that predict motivationally significant events. In turn, studies of 

associability show that the resulting attentional biases can themselves modulate the rate of 

future learning about the stimuli involved (predictive cues are subsequently learned about 

faster), such that the attention±learning relationship is truly interactive. 

We propose that the effects of learned predictiveness and learned value are unlikely to 

be the consequence of entirely separate processes or systems. Intuitively, these two effects 

seem intimately related. So it would be desirable, if possible, to explain all of the observed 

phenomena within a single model. Our attempts above met with some success. A simple 

PRGHO�LQ�ZKLFK�D�FXH¶V�DVVRFLDWLYH�VWUHQJWK�modulates attention explains most of the 

available data. Some evidence for a dissociation between associative strength and attention 

can be seen, however, in the inverse base rate effect; in this case, attention seems to go to the 

target cue that has lower associative strength. More theoretical and empirical work is thus 

required to provide a single simple model of learned predictiveness and learned value.  

Clinical Application 

Beyond its theoretical importance, an improved understanding of the processes underlying 

the relationship between learning and attention has clinical significance. In particular, many 

drugs of abuse produce potent neural reward signals (Dayan, 2009; Hyman, 2005; Robinson 

& Berridge, 2001). The ideas advanced in this article might lead us to expect that drug users 

will show enhanced attention to stimuli that are associated with these drug rewards (such as 

drug paraphernalia, or people and locations associated with drug supply). This is exactly what 

is observed: for example, people who are substance-use dependent show particular difficulty 

in processing a nonsalient target stimulus in the presence of a drug-related distractor stimulus 

(for reviews, see Field & Cox, 2008; Field, Munafo & Franken, 2009).  

In fact, recent work using a value-modulated capture procedure suggests that addicts 
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also show a heightened attentional bias for stimuli associated with nondrug (monetary) 

reward (Anderson, Faulkner, et al., 2013). This finding suggests that individual differences in 

susceptibility to substance abuse disorders may reflect, in part, differences in the level of a 

more general predisposition to develop attentional biases towards reward-related stimuli. 

Moreover, the extent of the attentional bias towards drug-related stimuli in recovering addicts 

is known to predict relapse (Cox, Hogan, Kristian & Race, 2002; Marissen et al., 2006; 

Waters et al., 2003). Such research raises the possibility that if such attentional biases could 

be reduced, the likelihood of relapse might also fall.  

The issue of the automaticity of value-modulated attention is relevant here. We saw 

earlier that the influence of reward learning on attention reflects (at least in part) an automatic, 

involuntary process that is cognitively impenetrable. The implication is that mere instruction 

is likely to be ineffective in reducing the magnitude of maladaptive attentional biases. Instead, 

attentional re-training may be required for a full resolution. Consistent with this idea, a recent 

large-scale study of alcohol-dependent individuals has shown that a cognitive re-training 

procedure can indeed reduce relapse rates at one year by up to 10% (Eberl et al., 2013; see 

also Fadardi & Cox, 2009; Schoenmakers et al., 2010). Work has just begun to emerge 

investigating the effect of reward on attentional bias training for clinical disorders 

(Sigurjonsdottir, Bjornsson, Ludvigsdottir & Kristjansson, 2015), and this area represents an 

exciting potential application of the findings from the learned attention literature. 

Conclusion  

The survey above describes a research area that is rich in findings and also rich in potential. 

There are aspects of learned attention that we now understand well. The other areas, about 

which we know considerably less, will no doubt become the focus of intense investigation. 

There are four areas that we have identified as being (at least to us) especially interesting. 

Firstly, there is abundant evidence for the predictiveness principle (in which attention is 
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preferentially allocated to cues that accurately predict their consequences), but relatively little 

support in human studies for the uncertainty principle (in which attention is preferentially 

allocated to cues whose outcome is currently unknown). These findings in humans stand in 

contrast to the literature on attentional learning in nonhuman animals, in which there have 

been many reports of data consistent with the uncertainty principle (see Pearce & Mackintosh, 

2010, for a review; see Holland & Maddux, 2010, for a detailed examination of the neural 

basis of uncertainty-related effects in animals). While the predictiveness principle and the 

uncertainty principle are seemingly in opposition, they can be reconciled in hybrid attentional 

models (George & Pearce, 2012; Le Pelley, 2004, 2010; Pearce & Mackintosh, 2010). Future 

research should aim to establish the role (if any) of the uncertainty principle in humans, in 

order to determine whether such hybrid models must be considered in the context of human 

attentional learning. One suggestion (though there are other possibilities) is that evidence for 

the uncertainty principle might be obtained in learning environments that encourage 

exploration rather than exploitation (Beesley et al., 2015).  

Secondly, we would be keen to know how far a simple model, in which attention is 

determined by associative strength, can go in explaining effects of both learned predictiveness 

and learned value. This might begin with further work looking at the inverse base rate effect, 

which provides possibly the strongest argument against the simple associative strength model. 

There are also two further areas of exciting research that have really only just begun. 

One is the examination of the effects on attention of outcome predictability (Griffiths, 

Mitchell, Bethmont & Lovibond, 2015). There is some suggestion here that outcomes that 

have been predictable in the past might be learned about more easily than outcomes that were 

unpredictable. This emerging research suggests that there may be some symmetry between 

cues and outcomes with respect to learned predictiveness.  

Finally, there are the fascinating findings concerning the automaticity of learned 
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attention. That is, when a participant has learned that a cue is predictive of a significant 

outcome (perhaps one of high value) they then pay attention to that cue in an automatic and 

involuntary manner. These findings have the potential to change the way in which 

psychologists think about attention. Often, controlled attention is referred to as goal-directed 

or endogenous, whereas automatic attention is referred to as stimulus-driven or exogenous 

(Corbetta & Shulman, 2002; Jonides, 1981; Posner, 1980; Posner & Cohen, 1984; Yantis, 

2000). Goal-directed processes refer to subject-GULYHQ�DWWHQWLRQ�WKDW�HQFRPSDVVHV�D�SHUVRQ¶V�

intentions. In contrast, stimulus-driven attentional processes relate to attention-grabbing 

characteristics that are intrinsic to the stimulus and which we cannot control; its brightness, 

onset, colour, etc. The automatic attention that participants pay to cues that predict valued 

outcomes is not goal-directed or under top-down control, but neither is it driven by the 

intrinsic, physical properties of the stimulus. Rather, the change in effective salience of the 

cue is the result of training; iW�FRPHV�DERXW�DV�D�FRQVHTXHQFH�RI�WKH�SDUWLFLSDQW¶V�experience 

with, and memory of, that cue and its relationship to other events. It would appear that what 

has been uncovered is a form of attentional bias²derived attention²that does not fit the 

standard goal-directed/stimulus-driven distinction. While William James (1890/1983) 

introduced the concept of derived attention over 125 years ago, the importance of this 

interface between learning and other aspects of cognition is only now becoming apparent. 
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Footnotes 

1  (Buckley, Smith & Haselgrove, 2014; Dixon, Ruppel, Pratt & De Rosa, 2009; Eimas, 1966; 

George & Kruschke, 2012; Isaacs & Duncan, 1962; Kruschke, 1996b; Livesey & McLaren, 

2007; Macho, 1997; Maes, Damen & Eling, 2004; Maes, Eling, Wezenberg, Vissers & Kan, 

2011; Maes, Vich & Eling, 2006; Owen, Roberts, Polkey, Sahakian & Robbins, 1991; Van 

der Molen et al., 2012; Whitney & White, 1993: see also Ahmed & Lovibond, 2015; Slabosz 

et al, 2006; Suret & McLaren, 2003; Liu, Mercado, Church & Orduna, 2008) 

2  (Beesley & Le Pelley, 2010; Bonardi, Graham, Hall & Mitchell, 2005; Buckley, Smith & 

Haselgrove, 2015; Don & Livesey, 2015; Griffiths & Mitchell, 2008; Le Pelley, Beesley & 

Griffiths, 2011; Le Pelley, Calvini & Spears, 2013; Le Pelley, Oakeshott, Wills & McLaren, 

2005; Le Pelley, Reimers, et al., 2010; Le Pelley, Schmidt-Hansen, Harris, Lunter & Morris, 

2010; Le Pelley, Suret & Beesley, 2009; Le Pelley, Turnbull, Reimers & Knipe, 2010; 

Livesey, Thorwart, De Fina & Harris, 2011; Lucke, Lachnit, Koenig & Uengoer, 2013; 

Mitchell, Griffiths, Seetoo & Lovibond, 2012; Morris, Griffiths, Le Pelley & Weickert, 2013; 

Shone, Harris & Livesey, 2015: see also Kersten, Goldstone & Schaffert, 1998) 

3  Some studies of blocking have found evidence of greater overt attention to the pretrained 

cue A than to the blocked cue B (Ellis et al., 2014; Le Pelley et al., 2007). This finding is 

consistent with the predictiveness principle (since pretraining renders A a better predictor of 

the outcome), but not with the uncertainty principle (since pretraining means that the outcome 

on AB trials is, if anything, less surprising given the presence of A than the presence of B). 

However, the difference in predictiveness between A and B is confounded with a difference 
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in familiarity (pretraining means that A is experienced more times than has B). Given the 

possibility that familiarity might exert an independent effect on attention, the finding of 

greater attention to A than B provides somewhat ambiguous support for the predictiveness 

principle over the uncertainty principle. 

4  (Balcetis, Dunning & Granot, 2012; Brielmann & Spering, 2015; Bucker, Silvis, Donk & 

Theeuwes, 2015; Chapman, Gallivan & Enns, 2015; Chapman, Gallivan, Wong, Wispinski & 

Enns, 2015; Chelazzi et al., 2014; Chen, Mihalas, Niebur & Stuphorn, 2013; Della Libera & 

Chelazzi, 2009; Doallo, Patai & Nobre, 2013; Eckstein, Schoonveld, Zhang, Mack & Akbas, 

2015; Field et al., 2011; Garland, Froeliger, Passik & Howard, 2013; Hardman, Scott, Field 

& Jones, 2014; Hickey & Peelen, 2015; Hogarth, Dickinson & Duka, 2005, 2009; Hogarth, 

Dickinson, Hutton, Elbers & Duka, 2006; Hogarth, Dickinson, Janowski, Nikitina & Duka, 

2008; Hogarth, Dickinson, Wright, Kouvaraki & Duka, 2007; Kiss, Driver & Eimer, 2009; 

Kristjansson, Sigurjonsdottir & Driver, 2010; Le Pelley, Mitchell, et al., 2013; Lee & 

Shomstein, 2014; Li, Howard, Parrish & Gottfried, 2008; Luque et al., 2015; Marini, Marzi & 

Viggiano, 2011; Marx & Einhauser, 2015; O'Brien & Raymond, 2012; Pascucci, 

Mastropasqua & Turatto, 2015; Pool, Delplanque, et al., 2014; Raymond & O'Brien, 2009; 

Reinhart & Woodman, 2014; Rothkirch, Ostendorf, Sax & Sterzer, 2013; Schutz, 

Trommershauser & Gegenfurtner, 2012; Shomstein & Johnson, 2013; Stankevich & Geng, 

2014, 2015; Wallis, Stokes, Arnold & Nobre, 2015; Wilbertz, van Slooten & Sterzer, 2014; 

Yokoyama, Padmala & Pessoa, 2015). Some of these studies (Chapman, Gallivan & Enns, 

2015; Chapman, Gallivan, Wong, et al., 2015; O'Brien & Raymond, 2012; Raymond & 

O'Brien, 2009; Rothkirch et al., 2013; see also Rutherford, O'Brien & Raymond, 2010) 

conflated learned value and learned predictiveness: stimuli differed both in the nature of the 
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outcome they were paired with (gain or loss of money), and the probability with which that 

outcome occurred. Hence it is unclear which was responsible for the differences in attention 

observed during the test phase of these studies. 

5  (Anderson, Laurent & Yantis, 2011a, 2012; Anderson & Yantis, 2013; Failing & 

Theeuwes, 2014; Gong & Li, 2014; Hickey & Peelen, 2015; Infanti, Hickey & Turatto, 2015; 

Jiao, Du, He & Zhang, 2015; MacLean & Giesbrecht, 2015; Mine & Saiki, 2015; Theeuwes 

& Belopolsky, 2012; Wang, Duan, Theeuwes & Zhou, 2014; Wentura, Muller & 

Rothermund, 2014; see also Pool, Brosch, Delplanque & Sander, 2014) 

6  (Asgeirsson & Kristjansson, 2014; Braem, Hickey, Duthoo & Notebaert, 2014; Camara, 

Manohar & Husain, 2013; Hickey, Chelazzi & Theeuwes, 2010a, 2010b, 2011, 2014; Hickey, 

Kaiser & Peelen, 2015; Hickey & Los, 2015; Hickey & van Zoest, 2013; see also Itthipuripat, 

Cha, Rangsipat & Serences, 2015) 

7  In the study by Failing and Theeuwes (2015), the difference in reward history of the 

different categories during the test phase is confounded with a difference in their selection 

history: high-value stimuli were chosen more frequently as targets during the preceding 

training phase, raising the possibility that it is this greater selection history (rather than the 

difference in learned value) that drives greater capture by these stimuli on test. 

8  One problem that immediately arises from this change is that the resulting model is no 

longer able to account for cue competition effects such as overshadowing and blocking 

(described earlier). The simple solution is to amend Equation [1] to use a summed prediction 

error, such that changes in the associative strength of cue A are based on the summed 
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DVVRFLDWLYH�VWUHQJWK�RI�DOO�SUHVHQWHG�FXHV���V), i.e. ¿8º L 5=º:IF Ã8;. This expression for 

changes in associative strength, which is the same as that of the well-known model by 

Rescorla and Wagner (1972), allows the model to account for cue competition effects such as 

overshadowing and blocking (see Le Pelley, 2004, for detailed discussion). For example, the 

model anticipates that blocked cues will gain less associative strength than control cues, and 

WKLV�ZLOO�UHVXOW�LQ�UHGXFHG�DWWHQWLRQ��.��WR�WKHVH�EORFNHG�FXHV�E\�(TXDWLRQ�>�@��DV�REVHUYHG�

HPSLULFDOO\��DQG�WKLV�UHGXFHG�.�ZLOO�DOVR�VORZ�IXUWKHU�OHDUQLQJ�DERXW�WKHVH�EORFNHG�FXHV�EDVHG�

RQ�WKH�HTXDWLRQ�IRU�ûVA above). 
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Figure Captions 

Figure 1.  Example sequence of events on a trial in the study by Livesey, Harris and Harris 

(2009). The initial asterisk signals the beginning of the trial. A series of letters is then 

presented rapidly (~100 ms per item). Two of these letters (the targets, T1 and T2) appear in 

red. The final mask (hash symbol) is immediately followed by a response cue ± either the left 

or right circle lights up, and participants must press a corresponding button as quickly as 

possible. After making this response, participants are asked to report T1 and T2 in turn. 

Certain letters that appeared as target T2 predicted the correct left/right response that would 

be required by the response cue; participants were better at detecting these predictive target 

letters than other, nonpredictive target letters. 

 

Figure 2.  Example stimulus displays from the training phase (a) and test phase (b) of the 

study by Anderson, Laurent and Yantis (2011a). In the training phase, the target was a red or 

green circle; in the test phase, the target was a shape singleton (either a diamond among 

circles, as here, or a circle among diamonds). Participants responded to the orientation 

(horizontal or vertical) of the line segment contained in the target. During training, rapid 

correct responses received reward, with the amount of reward depending on the colour of the 

target circle. A high-value distractor colour typically predicted large reward; a low-value 

colour typically predicted small reward. 

 

Figure 3.  6LPXODWLRQ�UHVXOWV�XVLQJ�YDULDQWV�RI�0DFNLQWRVK¶V��������DWWHQWLRQDO�WKHRU\�RI�

associative learning. Simulations comprised 100 trials on which cues A and X were together 

paired with an outcome (AX+), alternated with 100 trials on which X alone was presented 

without the outcome (X-). Thus A represents a reliable predictor of the outcome, while X 

represents a nonpredictive stimulus. Upper panels show the associative strength of A (VA) 
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across training, and lower panels show attention to A (DA). Blue lines show simulation results 

for a high-value outcome (O = 0.8), and red lines show results for a low-value outcome (O = 

0.3). (a) Attention calculated based on a comparison of relative predictiveness (Equation [2]). 

Since A is the most predictive stimulus regardless of outcome magnitude, DA increases to the 

upper limit of 1 in both cases. However, it approaches this limit more rapidly when outcome 

magnitude is large (O = 0.8) than when it is small (O = 0.3). So this model anticipates an 

influence of learned value on attention early in training, but not at asymptote. [Other 

parameters: S = T = 0.2]. (b) Attention determined by absolute associative strength (Equation 

[3]). As A develops associative strength, DA increases for both O = 0.8 and O = 0.3. However, 

since attention is determined by associative strength, which is in turn limited by O, asymptotic 

attention is greater when outcome magnitude is larger than when it is small. So this simpler 

model anticipates a persistent influence of learned value on attention. [Other parameter: S = 

0.3]. (Figure taken from Le Pelley, Beesley & Griffiths, in press) 
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