35 research outputs found

    Perfluorodecalin and bone regeneration

    Get PDF
    Perfluorodecalin (PFD) is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration

    Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies

    Get PDF
    SUMMARY: This study was undertaken to investigate the radiologic and clinical outcomes of vertebroplasty with calcium phosphate (CaP) cement in patients with osteoporotic vertebral compression fractures. The morphological changes of injected CaP cement in osteoporotic compressed vertebral bodies were variable and unpredictable. We suggest that the practice of vertebroplasty using CaP should be reconsidered. INTRODUCTION: Recently, CaP, an osteoconductive filler material, has been used in the treatment of osteoporotic compression fractures. However, the clinical results of CaP-cement-augmented vertebrae are still not well established. The purpose of this study is to assess the clinical results of vertebroplasty with CaP by evaluating the morphological changes of CaP cement in compressed vertebral bodies. METHODS: Fourteen patients have been followed for more than 2 years after vertebroplasty. The following parameters were reviewed: age, sex, T score, compliance with osteoporosis medications, visual analog scale score, compression ratio, subsequent compression fractures, and any morphological changes in the filler material. RESULTS: The morphological changes of injected CaP included reabsorption, condensation, bone formation (osteogenesis), fracture of the CaP solid hump, and heterotopic ossification. Out of 14 patients, 11 (78.6%) developed progression of the compression of the CaP-augmented vertebral bodies after vertebroplasty. CONCLUSIONS: The morphological changes of the injected CaP cement in the vertebral bodies were variable and unpredictable. The compression of the CaP-augmented vertebrae progressed continuously for 2 years or more. The findings of this study suggest that vertebroplasty using CaP cement should be reconsidered.ope

    A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    Get PDF
    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants

    Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Get PDF
    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering

    Wound dressings for a proteolytic-rich environment

    Get PDF
    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed

    In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential

    Get PDF
    Clinical interest on human mesenchymal progenitor cells (hMPC) relies on their potential applicability in cell-based therapies. An in vitro characterization is usually performed in order to define MPC potency. However, in vitro predictions not always correlate with in vivo results and thus there is no consensus in how to really assess cell potency. Our goal was to provide an in vivo testing method to define cell behavior before therapeutic usage, especially for bone tissue engineering applications. In this context, we wondered whether bone marrow stromal cells (hBMSC) would proceed in an osteogenic microenvironment. Based on previous approaches, we developed a fibrin/ceramic/BMP-2/hBMSCs compound. We implanted the compound during only 2 weeks in NOD-SCID mice, either orthotopically to assess its osteoinductive property or subcutaneously to analyze its adequacy as a cell potency testing method. Using fluorescent cell labeling and immunohistochemistry techniques, we could ascertain cell differentiation to bone, bone marrow, cartilage, adipocyte and fibrous tissue. We observed differences in cell potential among different batches of hBMSCs, which did not strictly correlate with in vitro analyses. Our data indicate that the method we have developed is reliable, rapid and reproducible to define cell potency, and may be useful for testing cells destined to bone tissue engineering purposes. Additionally, results obtained with hMPCs from other sources indicate that our method is suitable for testing any potentially implantable mesenchymal cell. Finally, we propose that this model could successfully be employed for bone marrow niche and bone tumor studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-013-9464-1) contains supplementary material, which is available to authorized users

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation

    No full text
    Objective: Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation.Methods: In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure.Results: In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials.Significance: In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use

    Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions

    No full text
    Magnesium phosphates such as newberyite (MgHPO4 center dot 3H(2)O) are formed in vivo and are known to be biodegradable and nontoxic after implantation. Indeed, magnesium apatites have been shown to support osteoblast differentiation and function, and bone formation can occur around metallic magnesium implants. However, very little is known regarding the precipitation and stability of magnesium phosphates in physiological environments. In order to address this, the aqueous formation of magnesium phosphate as a function of pH, temperature and ion concentration is reported. Physicochemical characterization of the precipitates was carried out: additionally, biocompatibility and gene expression of osteoblast differentiation markers for bone formation via an in vitro cell culture assay were determined. Precipitation conditions for newberyite, tribasic magnesium phosphate pentahydrate, holtedahlite, bobierrite and cattiite were determined. Under physiological conditions of pH, temperature and magnesium phosphate concentration, no precipitates were formed. However, at concentrations 10-100 times higher than physiological, magnesium phosphate precipitates of cattiite and newberyite were formed. These two minerals demonstrated biocompatibility with osteoblast cultures and induced osteoblast adhesion and differentiation. The pattern of expression of OCN and CollA1 genes in the presence of newberyite crystals was comparable to that of calcium phosphate bioceramics. In our experiments, we have shown that certain magnesium phosphate phases such as newberyite and cattiite are able to promote in vivo osteogenic activity in a similar way to calcium phosphates such as hydroxyapatite and brushite. This confirms the great potential of magnesium phosphate ceramics in the development of new biomaterials for bone regeneration. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
    corecore